NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR CURRICULUM

OF

BACHELOR OF TECHNOLOGY IN ELECTRONICS AND COMMUNICATION ENGINEERING 2021 ONWARD UNDERGRADUATE ADMISSION BATCH

V0:

Resolution of 50th Senate	18-05-2018	ltem no: 50.7
Resolution of 51st Senate	04-10-2018	ltem no: 51.2
Resolution of UGAC meeting	10-05-2019	
Final approval in 53rd Senate	13-05-2019	ltem no: 52.3
Publication date	30-05-2019	

V1:

Incorporation of new elective subjects	27-06-2019	
incorporation of new elective subjects	27-00-2019	

V2:

Rectification of minor errors	UGAC 31-08-2022
-------------------------------	-----------------

Final Approval in 67th Senate dated 20/09/2022 vide Item no: # 67.3

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Program Name: Bachelor of Technology in Electronics and Communication Engineering DETAILED CURRICULUM

CURRICULUM OF 2021 ONWARD UNDERGRADUATE ADMISSION BATCH FOR ELECTRONICS AND COMMUNICATION ENGINEERING - B.TECH.

L= Lecture hour/ week; T= Tutorial hour/ week; S= Sessional/ practical hour/ week

C= Subject credit point; H= Subject contact hour/ week.

Se	mester - I						
SI. No	Code	Subject	L	т	S	С	н
1	MAC01	Mathematics - I	3	1	0	4.0	4
2	PHC01	Engineering Physics	2	1	0	3.0	3
3	CYC01	Engineering Chemistry	2	1	0	3.0	3
4	XEC01	Engineering Mechanics	2	1	0	3.0	3
5	ESC01	Environmental Science	2	0	0	2.0	2
6	XES51	Engineering Graphics	1	0	3	2.5	4
7	HSS51	Professional Communication Laboratory	1	0	2	2.0	3
8	PHS51	Physics Laboratory	0	0	2	1.0	2
9	CYS51	Chemistry Laboratory	0	0	2	1.0	2
10	WSS51	Workshop Practice	0	0	3	1.5	3
11	XXS51	Co-curricular Activities - I	0	0	2	1.0	2
		TOTAL 13 4 14		14	24.0	31	
Ser	mester - II						
SI. No	Code	Subject	L	т	S	С	н
1	MAC02	Mathematics - II	3	1	0	4.0	4
2	CSC01	Introduction to Computing	2	1	0	3.0	3
3	ECC01	Basic Electronics	2	1	0	3.0	3
4	EEC01	Electrical Technology	2	1	0	3.0	3
5	BTC01	Life Science	2	0	0	2.0	2
6	XXC01	Constitution of India and Civic Norms	1	0	0	1.0	1
7	XES52	Graphical Analysis using CAD	0	0	2	1.0	2
8	CSS51	Computing Laboratory	0	0	2	1.0	2
9	ECS51	Basic Electronics Laboratory	0	0	2	1.0	2
10	EES51	Electrical Technology Laboratory	0	0	2	1.0	2
11	XXS52	Co-curricular Activities - II	0	0	2	1.0	2
		TOTAL	12	4	10	21.0	26

Semester - III	
-------------------	--

SI.	Code	Subject	L	Т	S	С	н
1	MAC331	Mathematics - III	3	1	0	4	4
2	ECC301	Network Analysis and Synthesis	3	1	0 4 4		
3	ECC302	Electronic Devices and Circuits- I	3	3 1 0 4 4			
4	ECC303	Signals and Systems	3	0			
5	PHC331	Physics of Semiconductor Devices	3	0	0	3	3
6	PHS381	Semiconductor Devices Laboratory	0	0	3	1.5	3
7	ECS351	Network Analysis and Synthesis Laboratory	0	0	3	1.5	3
8	ECS352	Electronic Devices and Circuits Laboratory	0	0	3	1.5	3
9	XXS381	Co-curricular Activities - III (Optional)	0	0	0	0	0
		TOTAL	15	3	9	22.5	27
	ester - IV					I	
SI.	Code	Subject	L	Т	S	С	Н
1	ECC401	Analog Communication	3	1	0	4	4
2	ECC402	Digital Circuits and Systems	3	1	0	4	4
3	ECC403	Electromagnetic Theory and Transmission Lines	3	1	0	4	4
4	EEC431	Control Systems	3	0	0	3	3
5	YYO44*	Open Elective - I	3	0	0	3	3
6	ECS451	Analog Communication Laboratory	0	0	3	1.5	3
7	ECS452	Digital Circuits and Systems Laboratory	0	0	3	1.5	3
8	EES481	Control Systems Laboratory	0 0 3 1.5		3		
9	XXS481	Co-curricular Activities - IV (Optional)	vities - IV (Optional) 0 0 0		0	0	
		TOTAL	15	3	9	22.5	26
Sem	nester - V						
SI.	Code	Subject	L	Т	S	C	Н
1	ECC501	Digital Communication	3	1	0	4	4
2	ECC502	Microwave Engineering			3		
3	ECC503	Microprocessors and Microcontrollers			4		
4	ECC504	Electronic Devices and Circuits-II	3 1 0 4		4		
5	YYO54*	Open Elective - 2	3	0	0 0 3 3		
6	ECS551			1.5	3		
7	ECS552	Microwave Engineering Laboratory 0 0 3 1.5				1.5	3
8	ECS553	Microprocessors and Microcontrollers Laboratory	0 0 3 1.5			3	
	-	i de la constanción d	0 0 0 0 0				
9	XXS581	Co-curricular Activities - V (Optional)	0	0	0	0	0

Sem	nester - VI						
SI.	Code	Subject	S	С	Н		
1	HSC631	Economics and Management Accountancy	3	0	0	3	3
2	ECC601	Antenna and Wave Propagation	3	0	0	3	3
3	ECC602	VLSI Design	3	0	0	3	3
4	ECC603	Digital Signal Processing	3	1	0	4	4
5	ECE610	Depth Elective - 1	3	0	0	3	3
6	ECE610	Depth Elective - 2	3	0	0	3	3
7	ECS651	Antenna and Wave Propagation Laboratory	0	0	3	1.5	3
8	ECS652	VLSI Design Laboratory	0	0	3	1.5	3
9	ECS653	Digital Signal Processing Laboratory	0	0	3	1.5	3
10	XXS681	Co-curricular Activities - VI (Optional)	0	0	0	0	0
		TOTAL	18	1	9	23.5	28
	nester - VII						
SI. No	Code	Subject	L	т	S	С	н
1	MSC731	Principles of Management	3	0	0	3	3
2	ECE710	Depth Elective - 3	3	0	0	3	3
3	ECE710	Depth Elective - 4	3	0	0	3	3
4	ECE710	Depth Elective - 5	3	0	0	3	3
5	YYO74*	Open Elective - 3	3	0	0	3	3
6	ECS751	Computer Aided Design Laboratory	0	0	3	1.5	3
7	ECS752	Electronic System Design Laboratory	0	0	4	2	4
8	ECS753	Advanced Communication Laboratory	0	0	3	1.5	3
9	ECS754	Vocational Training / Summer Internship and Seminar	0	0	2	1	2
10	ECS755	Project - I	0	0	3	1	3
		TOTAL	15	0	15	22	30
Sem	nester - VIII						
SI. No	Code	Subject	L	т	S	с	н
1	ECE810	Depth Elective - 6	3	0	0	3	3
2	YYO84*	Open Elective - 4 3 0 0		3	3		
3	YYO85*	Open Elective - 5	3	0	0	3	3
4	ECS851	Project - II	0	0	15	5	15
5	ECS852	Project Seminar	0	0	0	1	0
6	ECS853	Comprehensive Viva Voce	0	0	0	1	0
		TOTAL	9	0	15	16	24

CREDIT UNIT OF THE PROGRAM:

Semester	I + II	III	IV	V	VI	VII	VIII	TOTAL
Credit	45	22.5	22.5	22.5	23.5	22	16	174
Unit								

DEPTH ELECTIVE COURSE BASKETS

THE STUDENTS PRIMARILY WILL OPT FROM THE DEPTH ELECTIVE SUBJECT(S) THAT ARE OFFERED IN A PARTICULAR SEMESTER BY HIS/ HER OWN DEPARTMENT. HOWEVER, A STUDENT CAN OPT FOR DEPTH ELECTIVE SUBJECT(S) THAT ARE OFFERED BY OTHER DEPARTMENT IN A PARTICULAR SEMESTER, WITH THE PERMISSION/ CONSENT FROM HIS/ HER HEAD OF THE DEPARTMENT AND THE CONCERNED TEACHER OF THAT SUBJECT.

6th Semester

DEPARTM	ENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
ECE610	Artificial Intelligence & Soft Computing
ECE611	Computer Organization and Architecture
ECE612	Advanced Digital Communication
ECE613	Object Oriented Programming
ECE614	ASIC Design using Verilog/VHDL
ECE615	Active Filter Design
ECE616	VLSI Technology
ECE617	Probability and Random Signal Theory
ECE618	Data Comm. & Computer Networks
ECE619	Mobile Computing
ECE620	Nanoelectronics
ECE621	Measurement & Instrumentation
ECE622	Digital IC Design
ECE623	Mechatronics Systems
ECE624	Power Electronics
ECE625	Optical Communication

7th Semester

DEPARTM	IENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
ECE710	Detection and Estimation Theory
ECE711	Information Theory & Coding
ECE712	Analog IC Design
ECE713	FPGA Based Design
ECE714	MEMS and Microsystems Technology
ECE715	Machine Learning
ECE716	Millimetre Wave Technology
ECE717	RF ID Technology and Applications
ECE718	VLSI System Design
ECE719	Telecommunication Networks
ECE720	Advanced Semiconductor Devices
ECE721	Random Processes
ECE722	Microwave Circuits & Techniques
ECE723	Semiconductor Device Modelling
ECE724	Biomedical Instrumentation
ECE725	Adhoc and Sensor Networks

8th Semester

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING					
ECE810	Wireless Communication				
ECE811	Mixed Signal IC Design				
ECE812	Broadband Communication				

ECE813	Digital Image Processing
ECE814	Error Control Coding
ECE815	Embedded System Design
ECE816	RF and MMIC
ECE817	Design with Op. Amps. & Analog Integrated Circuits
ECE818	Satellite Communication
ECE819	RF IC Design
ECE820	Low Power Circuits & Systems
ECE821	Advanced Antenna Synthesis
ECE822	DSP Architectures in VLSI
ECE823	Internet of Things (IoT) Technology
ECE824	VLSI Testing and Verification
ECE825	Statistical Signal Processing

Sen	nester - I						
SI. No	Code	Subject	L	т	S	С	н
1	MAC01	Mathematics - I	3	1	0	4.0	4
2	PHC01	Engineering Physics	2	1	0	3.0	3
3	CYC01	Engineering Chemistry	2	1	0	3.0	3
4	XEC01	Engineering Mechanics	2	1	0	3.0	3
5	ESC01	Environmental Science	2	0	0	2.0	2
6	XES51	Engineering Graphics	1	0	3	2.5	4
7	HSS51	Professional Communication Laboratory	1	0	2	2.0	3
8	PHS51	Physics Laboratory	0	0	2	1.0	2
9	CYS51	Chemistry Laboratory	0	0	2	1.0	2
10	WSS51	Workshop Practice	0	0	3	1.5	3
11	XXS51	Co-curricular Activities - I	0	0	2	1.0	2
		TOTAL	13	4	14	24.0	31

DETAILED SYLLABUS FIRST SEMESTER

		Department of	Mathemat	ics					
Course	Title of the course	Program	Tota	l Number c	of contact ho	ours	Credit		
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total			
		Electives	(L)	(T)	(P)	Hours			
		(PEL)							
MAC 01	MATHEMATICS - I	PCR	3	1	0	4	4		
Pi	re-requisites	Course Assessment methods (Continuous (CT), mid-term (MT)							
		and end assessment (EA))							
Basic conce	epts of function, limit,	CT+MT+EA							
differentia	tion, and integration.								
Course	CO1: To introdu	ice the fundame	entals of d	ifferential o	calculus of s	ingle and	several		
Outcomes	variables								
	CO2: To devel	op the basic d	concepts o	of integral	calculus in	cluding i	multiple		
	integrals and it	s application in	finding ar	ea, volume	e, centre of	mass, ce	entre of		
	gravity etc.	gravity etc.							
	CO3: To introdu	CO3: To introduce the fundamental concepts of vector calculus							
	CO4: To develo	p the concept o	f converge	nce					

Topics	Functions of Single Variable: Rolle's Theorem and Lagrange's Mean Value Theorem
Covered	(MVT), Cauchy's MVT, Taylor's and Maclaurin's series, Asymptotes & Curvature
	(Cartesian, Polar form). (8)
	Functions of several variables: Function of two variables, Limit, Continuity and
	Differentiability, Partial derivatives, Partial derivatives of implicit function,
	Homogeneous function, Euler's theorem and its converse, Exact differential,
	Jacobian, Taylor's & Maclaurin's series, Maxima and Minima, Necessary and
	sufficient condition for maxima and minima (no proof), Stationary points,
	Lagrange's method of multipliers. (10)
	Sequences and Series: Sequences, Limit of a Sequence and its properties, Series of
	positive terms, Necessary condition for convergence, Comparison test, D Alembert's
	ratio test, Cauchy's root test, Alternating series, Leibnitz's rule, Absolute and
	conditional convergence. (6)
	Integral Calculus: Mean value theorems of integral calculus, Improper integral and
	it classifications, Beta and Gamma functions, Area and length in Cartesian and polar
	co-ordinates, Volume and surface area of solids of revolution in Cartesian and polar
	forms. (12)
	Multiple Integrals: Double integrals, Evaluation of double integrals, Evaluation of
	triple integrals, change of order of integration, Change of variables, Area and
	volume by double integration, Volume as a triple integral. (10)
	Vector Calculus: Vector valued functions and its differentiability, Line integral,
	Surface integral, Volume integral, Gradient, Curl, Divergence, Green's theorem in the
	plane (including vector form), Stokes' theorem, Gauss's divergence theorem and
Taxt Books	their applications. (10) Text Books:
Text Books,	
and/or reference	1. E. Kreyszig, Advanced Engineering Mathematics: 10th ed., Wiley India Ed. (2010).
	2. Daniel A. Murray, Differential, and Integral Calculus, Fb & c Limited, 2018.
material	3. Marsden, J. E; Tromba, A. J.; Weinstein: Basic Multivariable Calculus, Springer,
	2014.
	Reference Books:
	1. Tom Apostal, Calculus-Vol-I & II, Wiley Student Edition, 2011.
	2. Thomas and Finny: Calculus and Analytic Geometry, 11th Ed., Addison Wesley.

Manning of CO (Course outcom		
Mapping of CO (Course outcom	e) and PO	(Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	3	2	3	1	1	-	-	1	1	1	2
MAC01	CO2	2	3	2	3	-	1	-	-	1	1	2	2
IVIACUI	CO3	2	3	2	3	-	1	1	-	-	2	2	2
	CO4	З	З	2	3	1	1	-	1	-	2	1	2

Correlation levels 1, 2 or 3 as defined below:

Code	Title of the	Program		Credit				
Coue	course	Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hour s		
PHC01	Engineering Physics	PCR	2	1	0	3	3	
Pre-requisi	-	Course Assessr end assessmer		ods: (Contin	uous (CT), m	id-term	(MT) and	
NIL		CT+MT+EA						
Course Outcomes	Dutcomes principle, simple harmonic motion to real world problems. CO2: Learn about the quantum phenomenon of subatomic particles and its to the practical field. CO3: Gain an integrative overview and applications of fundamental optical such as interference, diffraction and polarization. CO4: Acquire basic knowledge related to the working mechanism of lasers							
Topics Covered	 CO4: Acquire basic knowledge related to the working mechanism of lasers and propagation through optical fibers. Harmonic Oscillations - Linear superposition principle, Superposition of the supe							
	Introductory Quaradiation, Plana uncertainty print simple problem Tunnelling effect Interference & I waves, Condition by division of w Michelson inter Multiple slits, Re Polarisation - P polarized light, I and extra-ordina analysis of polari Laser and Optica inversion, Einster	ck's quantum ciple and applicat s: Particle in a Diffraction - Huy ns of sustained In vavefront, Interf ferometer and solving power of olarisation, Qual Malus law, Brews ary rays, Optic a ized lights.	hypothesis, tions, Schro a one-dime [8] ygens' princ terference, erence by some prol grating. litative disc ster's law, I xis etc.; Po [5] neous and s icient, Optic	de Brog dinger's wa nsional bo iple, Young Concepts o division of blems; Fran [13] ussion on Double refra laroid, Nico	lie's hypot ave equation x, Simple s's experime of coherent s amplitude unhofer diff Plane, Circu action (biref ol prism, Re- emission of r pr and pump	echanics hesis, H harmonio harmonio nt, Supe sources, I with exa fraction, ilarly and ringence tardation radiation	[3] , Blackboo Heisenberg plications t c oscillato erposition o Interference amples, Th Single sli d elliptical e) - Ordinan plates an , Populatio hods, He-N	

- 1. Vibrations and Waves in Physics, Iain G. Main, Cambridge University Press
- 2. Quantum Physics, R. Eisberg and R. Resnick, John Wiley and Sons
- 3. Fundamental of Optics, Jankins and White, McGraw-Hill
- 4. Optics, A. K. Ghatak, Tata McGraw-Hill
- 5. Waves and Oscillations, N. K. Bajaj, Tata McGraw-Hill
- 6. Lasers and Non-linear Optics, B. B. Laud, New Age International Pvt Lt

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	3	2	1	1	1	-	-	1	-	-	-	1
DUC01	CO2	3	2	-	2	-	-	-	-	-	-	-	1
PHC01	CO3	3	2	2	2	1	1	1	1	1	-	1	1
	CO4	3	2	2	2	1	1	1	-	1	-	1	1

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program Core	Total	Number o	of contact ho	ours	Credit						
Code	course	(PCR) /	Lecture	Tutori	Practical	Total							
		Electives (PEL)	(L)	al (T)	(P)	Hours							
CYC 01	Engineering	PCR	2	1	0	3	3						
	Chemistry												
Pr	e-requisites	Course Assessm	nent metho	ds (Contin	uous (CT), m	id-term (MT) and						
			end	assessmei	nt (EA))								
	None			CT+MT+E	A								
Course	CO1: Intro	duced to chemi	cal thermo	odynamics	s, kinetics,	electro	chemistry,						
Outcome	s absorption,	absorption, and catalytic processes for engineering applications											
	CO2: To lear	 CO2: To learn fundamentals of polymer chemistry and petroleum engineering. 											
	CO3: Introde	CO3: Introduced to basic spectroscopic techniques for structure determination and											
	characteriza	tion.											
	CO4: To stud	dy few inorganic an	d bioinorga	nic compo	unds of indu	ustrial imp	oortance.						
Topics	ORGANIC CHEN	1ISTRY											
Covered		entals of organic re			•								
		echanism along					-						
		ration reaction, Org		-	(Gilman rea	agents), N	letathesis						
	-	ibb's catalyst and W	-			_							
		ental concept on s		•									
	-	ition of organic o	•				-selective,						
	-	ective, stereo-speci											
		chemistry and poly	-	-									
		chemistry; synthesis and application of important polymers, Rubber, and plastic											
		. Conducting polym		onu origi	o of minor	al aile a	oparation						
		n Engineering and					-						
		principle and techniques of distillation of crude oil, Uses of different fractions,											
		umber, cetane num	IDEI, KIIUCKI	ng, anti-K	octane number, cetane number, Knocking, anti-knock compounds, and Bio-Fuel.								

[
	(2)
	v. Structure elucidation of organic compounds by modern spectroscopic methods;
	Application of UV-Visible and FT-IR spectroscopy. (3)
	INORGANIC CHEMISTRY
	i. Coordination Chemistry: Crystal Field Theory of octahedral and tetrahedral complexes, colour and magnetic properties, Jahn-Teller distortion, pseudo Jahn-
	Teller distortion, Isomerism, and stereochemistry. (5)
	ii. Bioinorganic Chemistry: Heme and non-heme O ₂ transport protein
	(Haemoglobin, Myoglobin), Chlorophyll and photosynthesis. (3)
	iii. Inorganic Materials: Introduction towards industrially important inorganic
	materials like cementing material, refractory material, fertiliser, inorganic
	polymer. (2)
	iv. Organometallic Chemistry: π -acid ligands, stabilization of metal low oxidation
	state and 18 electron rules, metal carbonyls and nitrosyls, metal-alkene
	complexes. (4)
	PHYSICAL CHEMISTRY
	i. Thermodynamics: 2nd law of thermodynamics, entropy, free energy, Gibbs
	Helmholtz equation, change of phase. Cryogenics: joule Thomson experiment.
	(4)
	ii. Chemical Kinetics: 2nd and 3rd order rate expression, Reversible reaction, Chain
	reaction, Consecutive reaction, Temp effect on reaction rate. (4)
	iii. Electrochemistry: Electrochemical cell, Effect of pH, precipitation, and complex
	formation on EMF of oxidation/reduction processes. (2)
	iv. Absorption: Physical and Chemical absorption, Absorption isotherms. (1)
	v. Catalysis: Types of catalysis, Rate expression for Catalysed reaction, Acid-base
	and Enzyme catalysis. (2)
Text	<u>Suggested Text Books:</u> (i) Physical Chemistry by P. Atkins, Oxford
Books, and/or	(ii) A guidebook to mechanism in Organic chemistry: Peter Sykes; Pearson Edu.
reference	(iii) Inorganic Chemistry Part-I & II, R. L. Dutta, The new book stall
material	Suggested Reference Books:
material	Organic Chemistry:
	(i) Basic stereochemistry of organic molecules: S. Sengupta; Oxford University press
	(ii) Engineering Chemistry: Wiley
	(iii) Elementary Organic Spectroscopy: William Kemp, ELBS with Macmillan
	Inorganic Chemistry:
	(i) Inorganic Chemistry: Principle structure and reactivity, J. E. Huheey, E. A. Keiter and
	R. L. Keiter, Pearson Education
	(ii) Bioinorganic Chemistry Inorganic Elements in the Chemistry of Life: An
	Introductionand Guide, 2nd Edition, Wolfgang Kaim, Brigitte Schwederski, Axel Klein.
	(iii) Inorganic Chemistry Fourth Edition, Shriver & Atkins, Oxford
	Physical Chemistry:
l l	(i) Physical Chemistry by G.W Castellan
	(ii) Physical Chemistry by P. C. Rakshit

	mapping of co (course outcome) and to (trogramme outcome)												
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	1	2	-	-	-	-	-	-	-	-	-	-
CYC 01	CO2	1	-	-	-	-	-	2	-	-	-	-	-
	CO3	1	2	1	1	1	-	-	-	-	-	-	-
	CO4	-	1	-	-	2	-	1	-	-	_	_	_

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Tota	l Number c	of contact ho	ours	Credit				
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total					
		Electives	(L)	(T)	(P) [#]	Hours					
		(PEL)									
XEC01	ENGINEERING	PCR	2	1	0	3	3				
	MECHANICS										
Pr	e-requisites	Course Asse	Course Assessment methods (Continuous (CT), mid-term (MT)								
			and	end assess	ment (EA))						
				CT+MT-	+EA						
Course	• CO1: Acqu	ire knowledge o	f mechanio	cs and abilit	ty to draw fi	ree body	diagrams.				
Outcom	-	y knowledge of r			=	-	-				
	frame ana			0							
	CO3: Abilit	y to calculate ce	entroid, mo	ments of ir	nertia for va	rious sha	pes.				
		n momentum an					•				
		ledge on virtual		-	s applicatio	n					
Topics		echanics; measu									
Covere		rce as a vector;			-	on a par	ticle; free				
		and conditions									
		particles in spac	=				•				
	Resultant of a	system of fo	rces and	couples or	n a rigid b	ody; con	ditions of				
	equilibrium of	prium of a rigid body; free body diagrams of rigid bodies subjected to									
	different types	of constraints; s	imple space	e problem	s of rigid bo	dies. [4]					
	Coefficients of	static and kine	tic friction	; problems	involving f	riction; t	heories of				
	friction on squa	are threaded po	wer screw	and flat be	lt. [5]						
	Simple trusses;	analysis of trus	ses by met	hod of join	ts and meth	od of sec	tions. [5]				
	Centre of grav	ity and centre	of mass; c	entroids o	f lines, curv	es and a	reas; first				
	moment of ar	ea; second mo	ment of a	rea; polar	moment o	f inertia;	radius of				
		area; parallel axi									
		acceleration; red					-				
	. ,	duction to the co	• •		0						
		nd law of motio	-	-							
		tum; angular momentum; rectilinear and curvilinear motion;									
		vork-energy and impulse-momentum; impact of system of particles;									
		the concept of	-	-							
		rtual Work, Solu	ution of Pr	roblems on	Mechanics	s using P	rinciple of				
	Virtual Work [3	<u> </u>									

Text Books,	1) S P Timoshenko and D H Young, Engineering Mechanics, 5 th Edition
and/or	2) J L Meriam and L G Kraige, Engineering Mechanics, 5 th Edition, Wiley India
reference	3) F P Beer and E R Johnston, Vector Mechanics for Engineers
material	4) I H Shames, Engineering Mechanics

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
	CO1	1	-	-	-	-	-	-	-	-	-	-	1
	CO2	1	1	1	1	-	-	-	-	-	-	-	1
XEC01	CO3	1	1	-	-	-	-	-	-	-	-	-	1
	CO4	1	2	-	-	-	-	-	-	-	-	-	1
	CO5	-	2	2	2	2	1	-	-	-	1	-	1

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Tota	l Number c	of contact ho	ours	Credit				
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total					
		Electives	(L)	(T)	(P) [#]	Hours					
		(PEL)									
ESC01	Environmental	PCR	2	0	0	2	2				
	Science										
Pr	e-requisites	Course Asse		•	ntinuous (Cī ment (EA))	Г), mid-te	rm (MT)				
		CT+MT+EA									
Course	• CO1: Unde	01: Understand the importance of environment and ecosystem.									
Outcom	es 🔹 CO2: Unde	 CO2: Understand the fundamental aspect of pollutant tracking and its 									
	implement	ation in natura	al and ant	hropogeni	c pollution	of air a	nd water				
	system.										
	CO3: Unde	rstand the scien	tific basis o	of local and	as well as g	global issu	es.				
	CO4: Apply	of knowledge t	o develop :	sustainable	solution.						
Topics	Introduction:	Multidisciplinary	nature o	f Environm	nental Stud	ies; Basic	issues in				
Covere	d Environmental	Studies. [2]									
	Human populat	ion and the Env	ironment.	[1]							
	Social issues an	d the Environm	ent.	[1]							
	Constituents o	of our Environr	nent & th	ne Natural	Resources	: Atmos	ohere– its				
		aracters; Global	-								
		ts constituents,	Oceans, G	roundwate	er, Surface w	vaters; Hy	drological				
	cycle. [4]										
		constituents of	•		and Minera	al resour	ces; Plate				
		pt and its impor		[5]							
	•	components; Ec	•	•.		•					
		er and their	manageme	ent – Earl	thquakes, I	Floods, L	andslides,				
	Cyclones. [3]		under ter et s			[2]					
	Pollution: Poll	utants and their	role in air	and water	pollution.	[2]					

Text Books,	1. Environmental Studies – Benny Joseph – Tata McgrawHill-2005
and/or	2.Environmental Studies – Dr. D.L. Manjunath, Pearson Education-2006.
reference	3. Principles of Environmental Science and Engineering – P. V. Rao, PHI.
material	4. Environmental Science and Engineering – Meenakshi, Prentice Hall India.
	5.Environmental studies – R. Rajagopalan – Oxford Publication - 2005.
	6. Text book of Environmental Science & Technology – M. A. Reddy – BS Pub.

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	3	-	-	-	-	-	2	-	-	-	-	-
ESC01	CO2	1	-	-	-	-	-	2	-	-	-	-	-
	CO3	2	-	-	-	-	-	2	-	-	-	-	-
	CO4	1	-	3	-	-	2	1	-	-	_	-	-

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Title of the course	Program Core	Tota	l Number o	f contact ho	ours	Credit				
Code		(PCR) /	Lecture	Tutorial	Practical	Total					
		Electives (PEL)	(L)	(T)	(P)	Hours					
XES51	ENGINEERING GRAPHICS	PCR	1	0	3	4	2.5				
Pre-	-requisites	Course Assessm	ent method	ls (Continu (EA))	ous (CT) an	d end ass	essment				
	NIL	CT+EA									
Course Outcomes	•CO2: Theorem one/two/three										
Topics		uage of communi	cation; tec	hnical draw	ving tools a	nd their u	p-keep				
Covered	 CO3: Able to read/interpret industrial drawing and to communicate with relev people Graphics as language of communication; technical drawing tools and their up-keeping 										

	Freehand graphics. [3]
Text and/or	1) Engineering Drawing and Graphics – K Venugopal
reference	2) Engineering Drawing – N D Bhat
material	3) Practical Geometry and Engineering Graphics – W Abbott

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	1	-	-	-	-	-	-	-	-	-	-	-
XES51	CO2	1	1	-	-	-	-	-	-	-	-	-	-
	CO3	1	-	1	-	-	-	-	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Title of the	Program	Tota	l Number o	of contact ho	ours	Credit						
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total							
		Electives	(L)	(T)	(P)	Hours							
HSS51	Professional	(PEL) PCR	1	0	2	3	2						
110001	Communication	i ch	-	Ŭ	-	5	-						
	Lab												
Pr	e-requisites	Course Assessment methods (Continuous (CT) and end assessment											
		(EA))											
	None			CT+EA									
Course	CO1: Impr	ovement in lingu	istic proficie	ency of the	learners								
Outcom	es • CO2: Impr	CO2: Improvement in communicative ability of the learners											
	CO3: Impr	CO3: Improvement in social connectivity skill											
Topics	1. Professi	1. Professional Communication: Introduction (1)											
Covered	d 2. Technic	al Writing: Basic (Concepts (2)									
	3. Style in												
		4. Technical Report (2)											
		5. Recommendation Report (2)											
	-	6. Progress Report (1)											
		al Proposal (3)											
	8. Busines	• •	(-)										
		of Job Application	. ,	(0)									
	-	Scientific and Eng		apers (3)									
		e Use of Graphic . ation Techniques	• •										
		biscussion (6)	(0)										
		w Techniques (6)											
Text	Text Book:												
Books,		1. English for Engineers –Sudharshana& Savitha (Cambridge UP)											
and/or	0	Reference Books:											
reference		Engineers -Sudha	arshana & S	avitha (Car	nbridge (JP)								
materia	0	echnical Commur		•	0,	ucation)							

3. References to relevant NPTEL, MOOC, SWAYAM courses be given by the Instructor

	Mapping of CO (Course outcome) and PO (Programme Outcome)												
Course	irse COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
	CO1	1	_	_	1	_	1	_	1	2	3	1	_
HSS51	CO2	1	_	_	1	_	2	_	2	2	3	2	_
	CO3	_	_	_	1	_	3	_	3	3	3	2	_

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Title of the	Program	Total Nur	nber of con	tact hours		Credit			
Code	course	Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours				
PHS51	Physics	PCR	0	0	2	2	1			
	Laboratory									
Pre-requ	isites	Course Asse	ssment met	hods: (Cont	inuous evalu	ation (CE)	and end			
		assessment	(EA))							
NIL		CE+EA								
Course		lize and apply o	different teo	hniques for	measuring r	efractive i	ndices of			
Outcome										
		lize different ty			-	-	RO.			
		lerstand chargi	-			-				
		derstand interfo	erence, diffi	action and	polarization r	elated opt	tical			
	phenomena									
		uire basic knowledge of light propagation through fibers.								
Topics		refractive index	•	•	•					
Covered		e the refractive			-					
		ation of amplit		. ,	electrical sign	als by osci	lloscope.			
		the characteris								
		Brewster's law			light.					
		the diffraction			····					
		the interferenc	-		• • •	S.				
		nine numerical	-	r optical fibe	er.					
T auk au 1		ation of Planck constant.								
Text and			Dhusiaa V			 .				
reference	- ,	ook on Practical			dar and B. Gr	iosn				
material	2) Practical	Physics – Wors	shop and Fli	าt						

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	2	1	-	-	-	-	-	2	1	-	1
	CO2	3	2	1	-	-	1	-	-	2	1	-	1
PHS51	CO3	3	1	-	-	-	-	-	-	2	1	-	1
	CO4	3	2	-	1	-	1	1	-	2	1	-	1
	CO5	3	2	1	-	1	1	1	-	2	1	-	1

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Title of	the	Program Core	Tota	l Number o	of contact ho	ours	Credit				
Code	cours	se	(PCR) /	Lecture	Tutorial	Practical	Total					
			Electives (PEL)	(L)	(T)	(P)	Hours					
CYS51	CHEMIS	STRY	PCR	0	0	2	2	1				
	LABORA	TORY										
Pro	e-requisites		Course As	sessment n	nethods (C	ontinuous (C	CT) and e	nd				
				as	sessment (EA))						
	None		CT+EA									
Course	• CC)1: To lea	rn basic analytical techniques useful for engg applications.									
Outcome	s CC	02: Syntł	nesis and charact	esis and characterization methods of few organic, inorganic and								
	ро	lymer co	mpounds of industrial importance.									
	• CC	03: Learr	chromatographic separation methods.									
	• CC	04: Appli	Applications of spectroscopic measurements.									
Topics	i. E	xperime	nts based on pH n	netry: Dete	rmination	of dissociati	ion const	ant of we				
Covered	l a	cids by p	H meter.									
		•	nts based on co	•		ent: Deterr	nination	of amo				
		•	conductometric ti									
			n of metal ion: Est									
			n of metal ion: De				,					
		-	is and characterization of inorganic complexes: e. g. Mn(acac) ₃ , Fe(aca									
			cinato)copper (II)	monohyd	rate and t	heir charact	terization	by m. I				
		TIR etc.					_					
		-	and charact. of or		-	g.Dibenzylid	eneaceto	ne.				
			of polymer: polyn		•	tion of one o						
			on of Beer-Lamber ied solution.	ts law and	determina	tion of amo	untoriro	on prese				
			graphy: Separation	on of two o	mino acido	by papar d	aromator	ranhy				
			ation of saponifica				nomatog	гарпу				
		sted Tex	•									
			ntitative Chemical	Analysis (6	Sth Edition	Prentice Ha	all					
			nysical Chemistry									
			isive Practical Organic Chemistry: Qualitative Analysis By V. K.									
		•	S. Dhingra									
			erence Books:									
			emistry By R.C. Bh	nattacharya	9							
			periments in Physi			. Mukheriee	2					

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	<u> </u>	PO1	-	PO3	PO4	PO5		PO7			PO10	PO11	DO12
Course	COs	PUI	PO2	PU5	P04	PU5	PU0	P07	PUo	PU9	P010	PUII	PUIZ
	CO1	2	1	-	1	-	-	-	-	-	-	-	-
CYS51	CO2	-	1	-	1	1	2	-	-	-	-	-	-
C1351	CO3	2	-	-	1	1	-	-	-	-	-	-	-
	CO4	-	1	-	1	1	-	-	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Tota	al Number c	of contact ho	urs	Credi				
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total					
		/ Electives	(L)	(T)	(P) [#]	Hours					
		(PEL)									
WSS51	WORKSHOP	PCR	0	0	3	3	1.5				
	PRACTICE										
Pre-requisites		Course Asse	essment met	hods (Contin	nuous (CT) a	nd end ass	essment				
				(EA))						
	NIL	CT+EA									
Course	• CO1: 5	Study and pract	tudy and practice on machine tools and their operations								
Outcome	• CO2:	Practice on m	anufacturin	g of compo	onents using	worksho	p trade				
	includ	ing fitting, carp	entry, foun	dry and wel	ding						
	• CO3:	Identify and a	oply suitabl	e tools for	machining p	rocesses i	includin				
	turnin	g, facing, threa	d cutting ar	nd tapping							
	• CO4:	Develop basic	electrical	engineering	knowledge	for hous	e wirin				
	practi	 CO4: Develop basic electrical engineering knowledge for house wiring practice 									
Topics	M/c shop & 0	Carpentry shop		3X3= 9hrs	s.						
Covered	I Introd	Introduction on machining process.									
	 Introd 										
	 Introd 										
	 Introd 										
	 Makir 	Making of dovetail joint and bridle joint.									
	Welding Sho	Welding Shop & Sheet metal 3X3= 9hrs.									
	 Introd 	 Introduction to welding.Safety and precautions in welding. 									
	Forma										
		 Introduction to sheet Metal works. 									
	Tools	and Machines (used in shee	et metal wor	ks.						
		pt of developm									
		g and joining o		-							
		precautions, G			in the shop f	floor.					
	Black smithy	•		-	(3= 9hrs.						
	-	luction Smithir	ng and For			Furnaces	and it				
		sories, fuels.	.0	00	,,						
		and precautio	ns in blacks	mithy.							
	-	ig of bars of dif		-							
		 Making of hexagonal headed bolts. Forgo wolding 									
	-	Forge welding.Introduction to Foundry Technology.									
		ration of sand r	-		Dattorn						
	Fitting & Elec		noulu usilig	-	X3= 9hrs.						
	_	-	motal cutt	_		one nome	nclatur				
		luction to hand neir use.		ing tools wi	in specification	ons, nome	liciatur				
			ring tools a	nd their use							
		ng tools, measu s of ioints of mi	-								
		g of joints of mi									
	 Introd 	luction to elect	rical hazard	s and safety	precaution.						

	 Wire jointing and soldering. 						
	 PVC Conduit Wiring controlled by separate single way switches. 						
	 PVC Cashing Capping Wiring for two-way switches. 						
	• Conduit wiring for the connection of a Calling Bell with In& Out Indicators.						
	Batten Wiring and Cleat Wiring.						
	Tube Light Connection.						
	 Insulation Resistance Testing of 1ph / 3ph Motor and House Wiring. 						
	Earth Resistance Testing.						
	DOL Starter Connection.						
	Viva voce 1X3= 3hrs.						
Text Books,	1. Workshop Technology Part I and Part II by W. A. J. Chapman						
and/or	2. Elements of Workshop Technology S. K. Hazra Chowdhury, A. K. Hazra						
reference	Chowdhury and Nirjhar Roy						
material	3. Mechanical Workshop Practice by K. C. John						

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	2	-	-	-	-	1	-	-	-	1	-	-
	CO2	1	-	1	-	-	1	-	-	-	1	-	-
WSS51	CO3	1	-	2	-	-	1	-	-	-	1	-	-
	CO4	1	-	-	-	-	2	-	-	-	1	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title o	of the	Program Core	Total	Number o	f contact ho	ours			
Code	cou		(PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	Credit		
XXS-51	Co-curricular Activities		PCR	0	0	2	2	1		
Pre-requi	isites	Cour	se Assessment n	nethods (Co	ontinuous (CT) and end	1 assessm	ent (EA))		
NIL		CT+EA								
Course Outcomes	 CO1: Social Interaction: Through the medium of sports CO2: Ethics: Recognize different value systems including your ow understand the moral dimensions of your decisions, and accept responsibility for them CO3: Self-directed and Life-long Learning: Acquire the ability to engage independent and life-long learning in the broadest context societ technological changes. CO4: Personality development through community engagement CO5: Exposure to social service 						nd accept engage in			

Topics	YOGA
Covered	
	 Introduction of Yoga. Sitting Posture/Asanas- Padmasana, Vajrasana, Ardhakurmasana, Ustrasana, Bakrasana, Sasankasana, Janusirshasana, Suryanamaskar. Mudra- Gyana mudra, Chin mudra, Shuni mudra, Prana mudra, Adi mudra, Anjali mudra. Laying Posture/Asanas- PavanaMuktasana, UttanaPadasana, Sarpasana, Bhujangasana (Cobra Pose), Eka Pada Śalabhāsana, Dhanurasana, Chakrasana, Viparitkarani. Meditation- Yognidra, Om chant, Pray chant. Standing Posture/Asanas- <u>Tadasana (Mountain Pose)</u>, Vrikshasana (Tree Pose), Ardhachandrasana, Trikonasana, Utkatasana, Padahastasana. Pranayama- Deep breathing, AnulomVilom, Suryabhedi, Chandrabhedi. Kriya- Kapalbhati, Trataka.
	 Introduction of Athletic. Starting Technique for Track events- Standing start, Crouch & Block start. Finishing Techniques. Relay Race- 4×100m, 4×400m & Baton Exchange Technique & Rules. Track Marking with Fundamentals- 200m, 400m and Diagonal Distance Radius, Straight Distance, Staggers of Different Lanes & Curve Distance. BASKETBALL
	 Introduction and Players stance and ball handling. Passing- Two hand chest pass, two hand bounce pass, One hand baseball pass, Side arm pass, Overhead pass, Hook pass. Receiving- Two hand receiving, one hand receiving, receiving in stationary position, Receiving while jumping and Receiving while running. Dribbling- Dribble, High dribble, Low dribble, Reverse dribble, Rolling dribble. Rules of Basketball. Basketball game. VOLLEYBALL
	 Introduction of Volleyball Service- Underarm service, Sidearm service, Tennis service, Floating service, Jump service. Pass: Underarm pass- Ready position, Teaching stage of underarm pass and Upper hand pass- Volley pass, Back pass, Short set, Jump set & Underarm set. Rules and their interpretation. FOOTBALL
	 Introduction of Football Push pass- Instep inside, Instep outer side.

Kicking- Spot kick, Instep kick, Lofted kick.
 Dribbling- One leg, Both legs, Instep.
• Trapping- Rolling ball sole trapping, High ball sole trapping, High ball chest
trapping, High ball thigh trapping.
Throwing- Standing throw, Running throw, Seating throw.
 Goal Keeping- Griping the ball, Full volley, Half volley, Drop Kick.
Rules and their interpretation.
CRICKET
Introduction of Cricket
 Batting gripping & Stance, Bowling gripping technique.
Batting front foot defense& Drive.
Batting Back foot defense& Drive.
Batting Square cut.
Bowling medium pace, Bowling off break.
• Fielding drill, Catching (Short & High).
Rules & Regulation.
BADMINTON
Basic introduction about Badminton and Badminton court.
Racket parts, Racket Grip, Shuttle Grip. Basis stance, Racket Grip, Shuttle Grip.
Basic stance, Basic Footwork, Shadow practice (Full court movement).
Strokes services: Forehand- Overhead & Underarm, Backhand- Overhead &
Underarm.
Match practice (Single & Double).Rules & Regulation.
TABLE TENNIS
Introduction of Table Tennis.
 Basic Stance and Grip (Shake hand & Pen hold).
Service Basic.
• Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick,
Block, Smash.
• Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick,
Block, Smash.
Rules and their interpretations.
Table Tennis Match (Singles & Doubles).
NCC
 FD-1 General Introduction and words of command.
 FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the
halt.
• FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order
March and Dressing.
 FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out.
• FD-5 Marching, Length of pace and Time of Marching in quick time and Halt,

Slow March and Halt.FD-7 Turning on the March and Wheeling.
 FD-12 Parade practice.
·
TAEKWONDO
 Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. Foot Technique (Balgisul)- Standing kick (Saseochagi), Front kick (Abchagi), Doliyo (Chagi), Abdalchagi (Butterfly kick), Back kick etc.
Swachha Bharat Mission
 Free Medical Camp
·
Sanitation drive in and around the campus.
Unnat Bharat Abhiyaan

MatribhashaSaptah celebration

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	-	-	-	-	-	2	-	-	3	-	-	-
	CO2	-	-	-	-	-	-	-	2	-	-	-	-
XXS51	CO3	-	-	-	-	-	-	1	-	-	-	-	3
	CO4	-	-	-	-	-	-	-	-	2	2	-	-
	CO5	-	-	-	-	-	3	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

SI.	Code	Subject	L	т	S	с	н
No	Coue	Subject	L .		3	C	п
1	MAC02	Mathematics - II	3	1	0	4.0	4
2	CSC01	Introduction to Computing	2	1	0	3.0	3
3	ECC01	Basic Electronics	2	1	0	3.0	3
4	EEC01	Electrical Technology	2	1	0	3.0	3
5	BTC01	Life Science	2	0	0	2.0	2
6	XXC01	The Constitution of India and Civic Norms	1	0	0	1.0	1
7	XES52	Graphical Analysis using CAD	0	0	2	1.0	2
8	CSS51	Computing Laboratory	0	0	2	1.0	2
9	ECS51	Basic Electronics Laboratory	0	0	2	1.0	2
10	EES51	Electrical Technology Laboratory	0	0	2	1.0	2
11	XXS52	Co-curricular Activities - II	0	0	2	1.0	2
		TOTAL	12	4	10	21.0	26

SECOND SEMESTER

	Department of Mathematics							
Course	Title of the course	Program	Tota	l Number o	of contact ho	ours	Credit	
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total		
		Electives	(L)	(T)	(P)	Hours		
		(PEL)						
MAC 02	MATHEMATICS - II	PCR	3	1	0	4	4	
F	Pre-requisites	Course Assess	ment meth	nods (Conti	nuous (CT),	mid-term	n (MT)	
		and end assess	sment (EA))				
Basic co	ncepts of set theory,	CT+MT+EA						
differer	ntial equations, and							
	probability.							
Course	• CO1: Develop the concept of basic linear algebra and matrix equations so as to						so as to	
Outcome	apply mathema	atical methods involving arithmetic, algebra, geometry to solve						
	problems.							
	CO2: To acqui	ire the basic co	ncepts red	quired to u	inderstand,	construc	t, solve	
	and interpret d	ifferential equat	tions.					
	CO3: Develop	the concepts of	Laplace tra	ansformati	on & Fourie	r transfo	rmation	
	with its proper	ty to solve ord	inary diffe	rential equ	ations with	given bo	oundary	
	conditions whic	ch are helpful in	all enginee	ering & reso	earch work.			
	• CO4: To grasp	the basic concer	ots of prob	ability theo	ory.			
Topics	Elementary algebra	aic structures: (Group, sub	ogroup, rin	g, subring,	integral of	domain,	
Covered	and field.	(5)						
	Linear Algebra: Veo	ctor space, Subs	spaces, Lin	ear depen	dence and i	independ	ence of	
	vectors, Linear spa	n, Basis and d	imension	of a vecto	r space. Ra	ank of a	matrix,	
		Elementary transformations, Matrix inversion, Solution of system of Linear						
Ι Ρασρ	· · · · ·				•			

	equations, Eigen values and Eigen vectors, Cayley-Hamilton Theorem, Diagonalization of matrices. (15)							
	Ordinary Differential Equations: Existence and uniqueness of solutions of ODE							
	(Statement Only), Equations of first order but higher degree, Clairaut's equation,							
	Second order differential equations, Linear dependence of solutions, Wronskian							
	determinant, Method of variation of parameters, Solution of simultaneous							
	equations. (12)							
	Fourier series: Basic properties, Dirichlet conditions, Sine series, Cosine series,							
	Convergence. (4)							
	Laplace and Fourier Transforms: Laplace transforms, Inverse Laplace transforms,							
	Convolution theorem, Applications to Ordinary differential equations.							
	Fourier transforms, Inverse Fourier transform, Fourier sine and cosine transforms							
	and their inversion, Properties of Fourier transforms, Convolution.							
	(10)							
	Probability: Historical development of the subject and basic concepts, Axiomatic							
	definition of probability, Examples to calculate probability, Random numbers.							
	Random variables and probability distributions, Binomial distribution, Normal							
	distribution. (10)							
Text Books,	Text Books:							
and/or	1. E. Kreyszig, Advanced Engineering Mathematics: 10 th ed, Wiley India Ed. (2010).							
reference								
material	2. Gilbert Strang, Linear algebra and its applications (4th Ed), Thomson (2006).							
material	3. Shepley L. Ross, Differential Equations, 3 rd Edition, Wiley Student Ed (2017).							
	Reference Books:							
	1. S. Kumaresan, Linear algebra - A Geometric approach, PHI (2000).							
	2. C. Grinstead, J. L. Snell, Introduction to Probability, American Math. Society.							

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	3	2	1	2	-	2	-	-	-	1	2
N4A CO2	CO2	3	3	2	2	2	-	2	-	-	1	-	2
MAC02	CO3	3	3	2	2	3	1	1	-	1	1	1	2
	CO4	3	2	1	3	2	1	1	1	1	_	-	2

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program Core	Tota	l Number o	of contact ho	ours	Credit		
Code		(PCR) /	Lecture	Tutorial	Practical	Total			
		Electives	(L)	(T)	(P)	Hours			
		(PEL)							
CSC01	INTRODUCTION	DCD	n	1	0	n	2		
	TO COMPUTING	PCR	Z	1	0	3	3		
Р	re-requisites	Course Assessment methods (Continuous (CT), mid-term (MT) and							
		end assessment (EA))							
Basic know	wledge of computer.	CT+MT+EA							

Course	CO1: Recognize the changes in hardware and software technologies with respect to
Outcomes	the evolution of computers and describe the function of system software's
	(operating Systems) and application software's, languages, number system, logic
	gates.
	CO2: Illustrate the flowchart and inscribe an algorithm for a given problem Inscribe
	C programs using operators.
	CO3: Develop conditional and iterative statements to write C programs.
	CO4: Exercise user defined functions to solve real time problems
	CO5: Inscribe C programs that use Pointers to access arrays, strings and functions.
	CO6: Exercise user defined data types including structures and unions to solve
	problems.
Topics	Fundamentals of Computer: History of Computer, Generation of Computer,
Covered	Classification of Computers 2L Basic Anatomy of Computer System, Primary &
	Secondary Memory, Processing Unit, Input & Output devices. [2]
	Languages: Assembly language, high level language, compiler, and assembler (basic
	concepts) [1]
	Binary & Allied number systems representation of signed and unsigned numbers.
	BCD, ASII. Binary Arithmetic & logic gates. [2]
	Basic concepts of operating systems like MS DOS, MS WINDOW, UNIX, Algorithm &
	flow chart. [1]
	C Fundamentals: The C character set identifiers and keywords, data type & sizes,
	variable names, declaration, statements. [2]
	Operators & Expressions: Arithmetic operators, relational and logical operators,
	type, conversion, increment and decrement operators, bit wise operators,
	assignment operators and expressions, precedence, and order of evaluation. Input
	and Output: Standard input and output, formatted output printf, formatted input
	scanf. [8]
	Flow of Control: Statement and blocks, if - else, switch, loops - while, for do while,
	break and continue, go to and labels. [5]
	Fundamentals and Program Structures: Basic of functions, function types, functions
	returning values, functions not returning values, auto, external, static and register
	Variables, scope rules, recursion, function prototypes, C pre-processor, command
	line arguments. [5]
	Arrays and Pointers: One-dimensional, two-dimensional arrays, pointers and
	functions, multi-dimensional arrays. [10]
	Structures Union and File: Structure, union, structures and functions, arrays of
Toxt Pooks	structures, file read, file write.[5] Text Books:
Text Books, and/or	1. Let us C by Kanetkar
reference	 C Programming by Gottfried
material	 Introduction to Computing by Balaguruswamy
material	4. The C-programming language by Dennis Ritchie
	Reference Books:
	1. Computer fundamental and programming in C by P Dey and M. Ghosh
	2. Computer fundamental and programming in C by P bey and W. Ghosh 2. Computer fundamental and programming in C by Reema Thareja
	3. programming with C by Schaum Series
	o. programming with c by schudin sches

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	1	2	1	-	-	-	-	-	-	-	-
	CO2	-	2	1	2	1	-	-	-	-	-	-	-
CSC01	CO3	1	2	-	-	3	-	-	-	-	-	-	-
CSCUI	CO4	1	3	1	2	3	-	-	-	-	-	-	1
-	CO5	2	1	-	-	3	-	-	-	-	-	-	-
	CO6	2	-	3	-	1	-	-	-	-	-	-	-

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program Core	To	tal Numbe	r of contact	hours	Credit				
Code	course	(PCR) /	Lectur	Tutoria	Practical	Total					
		Electives (PEL)	e (L)	I (T)	(P)	Hours					
ECC01	Basic	PCR	2	1	0	3	3				
	Electronics										
	Pre-requisi	ites	Course	Assessme	nt methods	(Continuou	ıs (CT), mid-				
				term (MT) and end as	ssessment (EA))				
(10+2)	level mathemat	cics and physics			CT+MT+	EA					
Cours	e • CO1:	Knowledge of Sem	niconduct	or physics	and devices						
Outcom	es • CO2:	Have an in depth	understa	nding of ba	asic electror	nic circuit, c	onstruction,				
	opera	ation.									
	• CO3:	Ability to make pr	oper des	igns using	these circui	t elements	for different				
	appli	cations.									
	• CO4:	Learn to analyze t	he circuit	s and to fi	nd out rela	tion betwee	en input and				
	outpu	ut.									
Topics	s 1. Se	miconductors									
Covere		oncept of band for									
	-	of Fermi level, in	variance	of Fermi	level in a	system un	der thermal				
	equilibriu										
			r, conductor and semiconductor using band diagram								
		alline structure of	semicon	ductor							
		valent bond	سمما ماممه								
		neration of holes a ect of temperature									
		sic semiconductor	eonsenn	Lonductor							
		g and Extrinsic sen	niconduct	or							
	-	pe semiconductor									
		pe semiconductor		-							
		s-action law of ser		-							
		luctivity of semico			nathematica	al expression	า)				
		er transport pheno					,				
	I										

2.1. Construction 2.2. Unbiased diode; Depletion layer and Barrier potential; junction capacitance (expression only) 2.3. Principle of operation with forward biasing and reverse biasing 2.4. Characteristics 2.5 Diode's three models/equivalent circuits.(02 hrs.) 3. Diode Circuits 3.1 Diode rectifier 3.1.1 Half wave rectifier 3.1.2 Full wave rectifier:centre tap and bridge rectifier 3.1.3 Capacitive filter and DC power supply (Numerical problems) 3.2 Special Diodes 3.2.1 Zenerdiode: Avalanche breakdown and Zener breakdown and characteristics. 3.2.2 Zener diode as a voltage regulator 3.2.3 Displaydevices: LED and LCD. (03 hrs.) 4. Bipolar Junction Transistor (BJT) 4.1 n-p-n and p-n-p transistor and their constructions 4.2 Principle of operation Transistor configuration: common base, common emitter, and common 4.3 collector 4.4 Transistor characteristics: input and output characteristics of CB and CE configurations 4.5 DC load line: quiescent (Q) point; cut-off, active, and saturation region 4.6 Amplifier: Principle of operation 4.7 Transistor as a switch. (04 hrs.) 5. Transistor Biasing 5.1 Need of biasing 5.2 Methods of biasing: base resistor or fixed bias, emitter feedback, voltage divider biasing 5.3 Stability of Q-point (qualitative discussions) 5.4 (Numerical problems). (02 hrs.) 6.Single Stage Amplifier: classification of amplifiers (voltage amplifier, current amplifier, power amplifier etc.) Class-A CE Amplifier with coupling and bypass capacitors, Qualitative discussions of magnitude characteristics of frequency response (graph only) (02 hrs.) 7.Feedback Amplifier 7.1 Positive and negative feedback 7.2 Deduction of gain with negative feedback, explanation of stability of gain with negative feedback, other effects of negative feedback (no deduction), numerical problems. (03 hrs.) 8. Other Semiconductor Devices 8.1 JFET: Construction, principle of operation, characteristics 8.2 MOSFET: Construction, principle of operation, characteristics 8.3 Power Electronic Device-SCR: Brief discussions. (02 hrs.)

- 9. Operational Amplifier
- 9.1 Characteristics of ideal operational amplifier

	 9.2 Pin Configuration of IC 741, 9.3 Analysis of simple operational amplifier circuits: concept of virtual ground; noninverting amplifier and inverting amplifier. 9.4 Applications: voltage follower, summer, differentiator, integrator, and comparator (04 hrs) 10.Oscillator 10.1 Positive feedback and condition of oscillation 10.2 R-C phase-shift oscillator, Wien bridge oscillator.(02 hrs.) 11.Boolean Algebra 11.1 Boolean algebra, De Morgan's theorem, simplification of Boolean expressions 11.2 Number system, range extension of numbers, overflow 11.3 Different codes: gray code, ASCII code and BCD codes and them Applications. (01 hrs.) 12. Logic Gates 12.1 NOT, OR, AND, NOR, NAND, EX-OR, EX-NOR gates 12.2 Simplification of logic functions 12.3 Realizations of logic expressions using logic gates. (01 hrs.) 13. CRO and its applications and other test and measurement instruments. (01 hrs.)
Text Books, and/or reference material	 <u>Text Books</u>: Introduction Electronic Devices & Circuit Theory,11/e, 2012, Pearson: Boylestad & Nashelsky Electronic Principles, by Albert Paul MalvinoDr. and David J. Bates, 7/e. <u>Reference Books</u>: Integrated Electronics by Millman, Halkias and Parikh, 2/e, McGrawHill. ELECTRONICS Fundamentals and Applications by Chattopadhyay and Rakshit,15/e, New Age Publishers. The Art of Electronics by Paul Horowitz, Winfield Hill, 2/e, Cambridge University. Electronics - Circuits and Systems by Owen Bishop, 4/e, Elsevier. Electronics Fundamentals: Circuits, Devices & Applications by Thomas L. Floyd & David M. Buchla, 8/e, Pearson Education.

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	3	2	2	-	1	-	-	-	-	-	1
FCC01	CO2	3	2	1	2	2	1	-	2	2	-	-	1
ECC01	CO3	3	2	2	2	3	-	-	-	2	-	-	1
	CO4	3	3	2	2	-	-	-	-	2	-	-	1

Correlation levels 1, 2 or 3 as defined below:

	Dep	partment of Electric	cal Enginee	ering					
Course	Title of the	Program Coro	Tota	l Number	of contact h	ours	Credit		
Code	course	Program Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours			
EEC01	ELECTRICAL TECHNOLOGY	PCR	3	0	0	3	3		
Pre-	requisites	Course Assessm		ds (Contin d assessme		Mid Ter	m (MT),		
	NIL		(CT+MT+ I	EA				
Outcomes	 analysis of CO2: dev the workit CO3: lea such circut CO4: intre 	rn the fundamentals of Electric Circuits and Network theorems and of electrical network based on these concepts. velop an idea on Magnetic circuits, Electromagnetism and learning ing principles of some fundamental electrical equipment's rn about single phase and poly-phase AC circuits and analysis o uits based on these concepts. roduce the basic concept of single-phase transformer. alyze the transient phenomena in electrical circuits with DC							
Topics Covered	Fundamentals of and Dependent Network theor Theorem, Maxi Magnetic circu transformer an coupled circuits Transients with Generation of R.M.S. value, quantity, Beha circuits. AC No theorem, maxi sources. (10) Single-Phase T (6) Poly-phase sys voltages, Volta	verview of Electric of Electric Circuit sources, Analysis rems: Superpositio imum Power Trans its: Review of fund rotational emb s (self-inductance, a D.C. excitation for alternating voltag Phase and phase of vior of A.C. circ etwork: Superposition imum power transformer, equiva- stem, Advantages age, current and po- and unbalanced c	s: Ohm's of simple of on Theore after Theore ndamental fs, Solution mutual indo or R-L and e and curr difference, uits, Reso ition theore alent circuit of 3-pha power in a s	laws, Kirc circuits. (4 cm, Theve em (4) l laws of e n of mag ductance, a R-C circuit rent, E.M. Phasor re nance in rem, Thev rem, solut ts, open cin use system star and d	whhoff's law enin's Theo electromagr netic circui and dot con its. (3) F. equation presentation series and venin's theo tion of net ircuit and sh n, Generati elta connec	vs, Indep prem, No netic indu- ts. Analy- ivention) n, Average n of alter parallel prem, No works w nort circu on of 3 ted syste	orton's uction, ysis of (8) ge and rnating R-L-C orton's ith AC it tests S-phase ems, 3-		

Textbooks/Referen	Textbooks:
ce material	1. Electrical & Electronic Technology by Hughes, Pearson Education India
	Reference Books:
	1. Advanced Electrical Technology by H. Cotton, Reem Publication Pvt. Ltd
	2. Electrical Engineering fundamentals by Vincent Deltoro, Pearson Edu
	India

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	3	3	3	1	1	1	1	1	1	1
CO2	3	3	3	3	2	1	2	1	1	1	1	1
CO3	3	3	3	3	3	2	2	1	1	1	1	1
CO4	3	3	3	3	3	2	2	1	1	1	1	1
CO5	3	3	2	2	2	1	1	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

Course	Title of the	Program Core	Tota	l Number c	of contact ho	ours	Credit			
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
BTC01	LIFE SCIENCE	PCR	2	0	0	2	2			
Pr	e-requisites	Course Assess	ment meth	nods (Conti	nuous (CT),	mid-term	ո (MT)			
			and er	nd assessm	ent (EA))					
				CT+MT+E	A					
Course	CO1: Basic und	derstanding of bas	sic cellular	organizatio	on of organ	isms and	cellular			
Outcome	es communication	ns, structure and	function	s of the	macromole	cules an	d their			
	biosynthesis ar	biosynthesis and catabolism.								
	CO2: To give	CO2: To give an understanding of the key features of the structure, growth								
		behavior of bacte		· •	•					
		uce molecular biology to understand biological processes in various								
	applications.									
	•	de a foundation in immunological processes and an overview of the tween the immune system and pathogens.								
			•				as that			
		ide knowledge al ering expertise to :		-	Diochemica	r process	ses that			
		ide knowledge al			hiochemica	Inrocess	es that			
		ering expertise to		0	biochenned		ics that			
Topics		- ·								
Covered		ction to life scienc	e: prokaryo	otes & euka	aryotes					
	Definiti	on; Difference			-					
	b) Introdu	ction to cells - Def	ine cell, dif	ferent type	es of cell					
	c) Cellular	organelles - All or	ganelles ar	nd function	s in brief					
	d) Cellular	communications								

	Introduction to basic signaling, and arring paragring signaling, concents of
	Introduction to basic signaling; endocrine, paracrine signaling; concepts of receptor, ligand, on-off switch by phosphorylation/dephosphorylation
2. Bioc	chemistry (4)
	Biological function of carbohydrate and lipid - Introduction, structure and
- /	function
b)	Biological function of nucleic acids and protein - structure and function
	Catabolic pathways of Macromolecules - Introduction to catabolism,
-	hydrolysis and condensation reactions; Catabolism of glucose- Glycolysis,
	TCA; overall degradation of proteins and lipids
d)	Biosynthesis of Macromolecules
	Generation of ATP (ETS), Generation of Glucose (Photosynthesis)
3. Mic	robiology (5)
a)	Types of microorganisms and their general features - Bacteria, Yeast, Fungi,
	Virus, Protozoa- general introduction with practical significance and
	diseases
b)	Microbial cell organization - Internal and External features of cell- bacterial
,	cell wall, viral capsule, pilus etc,
C)	Microbial nutritional requirements and growth - Different Sources of
(ام	energy; growth curve
	Basic microbial metabolism - Fermentation, Respiration, Sulfur, N ₂ cycle
	nunology (5) Basic concept of innate and adaptive immunity - Immunity-innate and
aj	adaptive, differences, components of the immune system
h)	Antigen and antibody interaction - Antigen and antibody, immunogen,
0)	factors affecting immunogenicity, basic antigen-antibody mediated assays,
	introduction to monoclonal antibody
c)	Functions of B cell - B cell, antibody production, memory generation and
,	principle of vaccination
d)	Role of T cell in cell-mediated immunity - Th and Tc, functions of the T cell
	with respect to different pathogen and cancer cell
5. Mol	ecular Biology (5)
a)	Prokaryotic Genomes (Genome organization & structure) - Nucleoid,
	circular or linear
b)	Eukaryotic Genomes (Genome organization & structure) - Intron, exon,
	packaging, chromatin
	Central Dogma (Replication, Transcription and Translation)
d)	Applications of Molecular Biology (Diagnostics, DNA-fingerprinting,
	Recombinant products etc.) - Introduction to Recombinant DNA,
C D:	fingerprinting, cloning
-	process Development (5)
d)	Microbial growth kinetics - Batch, fed-batch and continuous systems, Monod Equation
h)	Enzyme kinetics, kinetics of enzyme inhibition and deactivation
IJ	Definition of enzymes, activation energy, Concepts of Km, Vmax, Ki
c)	Microbial sterilization techniques and kinetics
0	Introduction to sterilization, dry and moist sterilization
(h	Thermodynamics of biological system - Concepts of Enthalpy, Entropy,
ω,	

	favorable reactions, exergonic and endergonic reactions
	e) Material and energy balance for biological reactions - Stoichiometry
Text Books,	1. Biotechnology 01 Edition, authored by U. Satyanarayana, BOOKS & ALLIED (P)
and/or	LTD.
reference	2. Biochemistry by Lehninger. McMillan publishers
material	3. Microbiology by Pelczar, Chan and Krieg, Tata McGraw Hill
	4. Brown, T.A., Genetics a Molecular Approach, 4th Ed. Chapman and Hall, 1992
	5. Kuby J, Thomas J. Kindt, Barbara, A. Osborne Immunology, 6th Edition,
	Freeman, 2002.
	6. Bioprocess Engineering: Basic Concepts (2nd Ed), Shuler and Kargi, PHI.

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	1	1	-	1	-	-	-	-	-	-	-
	CO2	2	1	1	-	1	-	1	-	-	-	-	-
BTC01	CO3	2	1	1	-	1	-	-	-	-	-	-	-
	CO4	2	1	1	-	1	-	-	1	-	-	-	1
	CO5	2	1	1	-	1	1	1	-	-	_	_	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the c	ourse Progra	am Core	Tota	l Number o	of contact ho	ours	Credit				
Code		(PC	CR) /	Lecture	Tutorial	Practical	Total					
		Electiv	es (PEL)	(L)	(T)	(P)	Hours					
	The Constitu	ution										
XXC01	of India and	Civic P	CR	1	0	0	1	1				
	Norms											
Pr	e-requisites	Cour	Course Assessment methods (Continuous (CT), mid-term (MT)									
				and end assessment (EA))								
	NIL			CT+MT+EA								
Course	CO1: Ele	mentary under	standing	of the evol	ution of his	storical even	nts that le	d to				
Outcome	es the ma	aking of the Ind	ian const	itution, the	philosoph	ical values, k	basic stru	cture				
	and fu	nd fundamental concerns enshrined in the Constitution of India.										
	CO2: Aw	vare of the fund	amental	rights and o	duties as a	citizen of th	e country	<i>.</i>				
	CO3: Er	able to know	the civic	norms to	be follow	ed accordir	ng to the	e Indian				
	consti	tution										
Topics	1. H	storical backgro	ound of th	ne Making	of Indian Co	onstitution ((1 Hour)					
Covered	d 2. Pi	eamble and the	e Philosop	phical Value	es of the Co	onstitution (1 Hour)					
	3. Bi	ief Overview of	Salient F	eatures of	Indian Con	stitution (1	Hour)					
	4. Pa	4. Parts I & II: Territoriality and Citizenship (1 Hour)										
	5. Pa	5. Part III: Fundamental Rights (2 Hours)										
		art IV: Directive	•			ur)						
	7. Pa	art IVA: Fundam	ental Du	ties (1 Hou	r)							

	 Union Government: President, Prime Minister and Council of Ministers (2 Hours)
	9. Parliament: Council of States and House of the People (1 Hour)
	10. State Government: Governor, Chief Mister and Council of Ministers (1 Hour)
	11. State Legislature: Legislative Assemblies and Legislative Councils (1 Hour)
	 Indian Judiciary: Supreme Court and High Courts (1 Hour)
	13. Centre-State Relations (1 Hour)
	14. Reservation Policy, Language Policy and Constitution Amendment (1 Hour)
Text Books,	Primary Readings:
and/or	1) P. M. Bakshi, <i>The Constitution of India</i> , 18 th ed. (2022)
reference	2) Durga Das Basu, Introduction to the Constitution of India, 25 th ed. (2021)
material	3) J.C. Johari, Indian Government and Politics, Vol. II, (2012)
	Secondary Readings: Granville Austin, The Indian Constitution: Cornerstone of a
	Nation (1966; paperback ed. 1999); Granville Austin, Working a Democratic
	Constitution: The Indian Experience (1999; paperback ed. 2003).

Course	Title of the course	Program Core	Tota	l Number o	of contact ho	ours	Credit					
Code		(PCR) /	Lecture	Tutorial	Practical	Total						
		Electives (PEL)	(L)	(T)	(P)	Hours						
XES52	GRAPHICAL											
AE352	ANALYSIS USING	PCR	0	0	2	2	1					
	CAD											
Pr	e-requisites	Course Assessm	ent method	ls (Continu	ous (CT) an	d end ass	essment					
				(EA))								
	NIL	CT+EA										
Course	•CO1: Introduc	 CO1: Introduction to graphical solution of mechanics problems 										
Outcome	es •CO2: Knowle	•CO2: Knowledge on graphical solution methods for solving equilibrium										
	coplanar forc	e system										
	•CO3: Introdu	cing Maxwell diag	gram and	solution of	f plane trus	ses by g	raphical					
	method											
	•CO4: Determi	nation of centroid	of plane fi	igures by gi	raphical met	thod						
	• CO5: Exposur	e to AutoCAD soft	ware for co	omputer aid	ded graphic	al solutio	n					
Topics	Graphical ar	nalysis of problems	s on statics	. [14]								
Covered	• Graphical so	olution of engineer	ing proble	ms using C	AD (with the	e help of						
	"AutoCAD")	 Graphical solution of engineering problems using CAD (with the help of "AutoCAD") [14] 										
Text and/	or 1) Engineering	1) Engineering Drawing and Graphics – K Venugopal										
referenc	e 2) AutoCAD —	2) AutoCAD — George Omura										
materia	l 3) Practical Ge	ometry and Engin	eering Gra	phics – W A	Abbott							

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	2	-	-	I	-	-	-	-	-	-	-	-
	CO2	1	2	-	-	-	-	-	-	-	-	-	-
XES52	CO3	2	1	-	-	-	-	-	-	-	-	-	-
	CO4	2	1	-	-	-	-	-	-	-	-	-	-
	CO5	1	-	-	-	2	-	-	-	-	_	-	_

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Title of the	Program Core	Tota	l Number c	of contact ho	ours	Credit					
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total						
		Electives (PEL)	(L)	(T)	(P)	Hours						
CSS51	COMPUTING LABORATORY	PCR	0	0	2	2	1					
Pr	e-requisites	Course Assessm	ent method	ls (Continu	ous (CT) an	d end ass	essment					
	(EA))											
	NIL			CT+EA								
Course	•CO1: To un	• CO1: To understand the principle of operators, loops, branching statements										
Outcome	es function, rec	function, recursion, arrays, pointer, parameter passing techniques										
	• CO2: To deta	il out the operatio	ns of string	S								
	• CO3: To und	erstand structure, i	union									
	• CO4: Applica	tion of C-programr	ning to solv	ve various i	real time pro	oblems						
Topics	List of Experim	List of Experiments:										
Covered	1 1. Assignments	on expression eva	luation									
	2. Assignments	on conditional bra	nching, ite	rations, pat	ttern match	ing						
	3. Assignments	on function, recur	sion									
	•	on arrays, pointers	· •									
	5. Assignments	on string using arr	ay and poir	nters								
	6. Assignments	on structures, unio	on									
Text Book	ks, Text Books:											
and/or	1. Let us C by											
referenc		ning by Gottfried										
materia		n to Computing by	-	•								
		ramming language	by Dennis	Ritchie								
	Reference Boo	-										
		ndamental and pro			•							
		ndamental and pro	• •	in C by Ree	ema Thareja							
	3. programmin	g with C by Schaum	n Series									

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	-	1	-	-	-	-	-	-	-	-	-
	CO2	-	2	1	3	-	-	-	-	-	-	-	-
CSS51	CO3	-	1	-	2	1	-	-	-	-	-	-	-
	CO4	-	-	3	2	-	-	1	-	-	-	2	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program Core	Tota	l Number o	of contact ho	ours	Credit							
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	oreare							
		Electives (PEL)	(L)	(T)	(P)	Hours								
ECS 51	Basic electronics	PCR	0	0	2	2	1							
	Lab													
Pr	e-requisites	Course As	sessment n	nethods (Co	ontinuous (C	CT) and e	nd							
			as	sessment (l	EA))									
	NIL			CT+EA										
Course	• CO1: Acqu	uire idea about k	basic elect	ronic com	ponents, id	entificati	on, and							
Outcom	es behavior.													
	• CO2: To d	etermine IV chara	acteristics	of these Ci	ircuit eleme	ents for c	lifferent							
	application													
		n to analyze the o	circuits and	d observe a	and relate i	nput and	l output							
	signals.													
Labs		our laboratory: 1		and unde	rstand the	use of c	lifferent							
Conducte		electronic and electrical instruments. To identify and understand name and related terms of various electronics												
		. To identify and understand name and related terms of various electronics												
		components used in electronic circuits.: Identify different terminals of components, fid their values and observe numbering associate with it.												
					-									
		illoscope and fun equency/time and	-			•	lleasure							
	_	alf wave and Full-	-	-			anacitor							
	filter circui					vitilout c	apacitoi							
		of basic logic gat	es: Truth ta	able verific	ation of OR	AND NO	OT. NOT							
		logic gates from T				,,,	.,							
		power supply: stu		and LM79	XX voltage r	egulator	ICs							
	-	as a Switch: study	•		-	-								
	gate						-							
	8. Zenner dio	de as voltage regu	lator											
	9. To study cl	ipping and Clampi	ng circuits											
	10. To study di	fferent biasing cir	tis.											
	11. Study of CE	amplifier and obs	serve its fre	equency res	sponse.									
Text Boo														
and/or		s Manual for use v				-								
referenc	0	& the Trades) by A	lbert Paul I	MalvinoDr.	, David J. Ba	tes, et al.								
materia				•. •. •										
		t of Electronics 3e,												
	2. Electro	nic Principles, by A	Albert Paul	MalvinoDr	. and David	J. Bates								

	Mapping of CO (Course outcome) and PO (Programme Outcome)														
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12		
	CO1	3	2	1	2	2	1	-	-	2	-	-	-		
ECS51	CO2	3	2	2	2	3	-	-	-	2	_	-	-		

-

2

Manning of CO (Course outcome) and BO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

3

CO3

3

2

2

		De	partment of Elec	trical Engi	neering						
Course	Title o	f the course	Program	Tota	l Number o	of contact he	ours	Credit			
Code			Core (PCR) /	Lecture	Tutorial	Practical	Total				
			Electives	(L)	(T)	(P)	Hours				
			(PEL)								
EES51		TRICAL									
		NOLOGY	PCR	0	0	2	2	1			
		RATORY	Course Assessment methods (Continuous (CT) and end								
Pi	re-requis	ites	Course As				CT) and	end			
			assessment (EA))								
	None				CT+EA			-			
Course		-	ccessful complet				ould be ab	ole to			
Outcome	es		derstand the prin	-							
			derstand the prin								
			derstand the char	racteristics	of CFL, in	candescent	Lamp, ca	rbon			
		lamp.	derstand the cali	bration of	anaray mat	or					
			derstand open ci		0.		le-nhase				
		transform	-	icuit and si	non en cui	test of shigh	ie pliase				
			alyze RLC series	s and parall	lel circuits						
			derstand three pl								
			lerstand determin								
Topics	Lis	t of Experime	nts:								
Covered	d	1. To verify	Superposition a	and Thever	nin's Theor	em.					
		2. To verify	V Norton and Ma	iximum po	wer transfe	r theorem					
			ristics of fluores		ompact flue	prescent lar	np				
			on on energy me				_				
			rm the open circ	uit and sho	ort circuit te	est on single	phase				
		transform		1	(C	. 111.		11 1			
		•	the balanced the	-	•		a connect	ed load			
			ristics of differe Series and paral			ent lamps					
		•	-			erial					
Textbook	a Te	9. Determination of B-H Curve for magnetic material Textbooks:									
and/or	- /		f Laboratory Exp	periments i	n Electroni	ics and Elec	trical				
reference		Engineering	• 1		Chuma, H						
materia	-	0 0	Courses in Electr	0			S. G. Tar	nekar,			
materia	"	•	anda, S. B. Bodh	-		•					
		Publications)									

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	1	1	1	2	2	2	3
CO2	3	3	3	3	3	1	1	1	2	2	2	3
CO3	3	3	3	3	3	1	1	1	2	2	2	3
CO4	3	3	3	3	3	1	1	1	2	2	2	3
CO5	3	3	3	3	3	1	1	1	2	2	2	3

Mapping of CO (Course Outcome) and PO (Programme Outcome)

CO6	3	3	3	3	3	1	1	1	2	2	2	3	
CO7	3	3	3	3	3	1	1	1	2	2	2	3	
CO8	3	3	3	3	3	1	1	1	2	2	2	3	
1:	Slight	t (Low)	Со	rrelatior 2: Mo	i levels derate	-		efinec		ubstanti	ial (Hig	gh)	
	ті+	le of th	•	Progran	o Coro		Т	otal N	Number o	of conta	ct hou	ırs	
Course Code		course	e	/ Elec		Lectu (L)	re	Tutorial (T)	Pract (P)		Total Hours	Credit	
XXS-52		curricul ctivities			PCR		0		0	2		2	1
Pre-requisites	C	Course a	sses	sment m	ethods	: (Cont	inuous	evalu	ation((CE	E) and er	nd ass	essment	(EA)
NIL							CE +	EA					
Outcomes		the CO3 inde char CO4	mora : Sel penc nges. : Pers	II dimens If-directe Jent and	ions of ed and I life-lo develop	your c Life-l ng lea	lecision ong Le rning i througl	s, and arning n the	tems inc l accept r g: Acqui broades munity e	responsi re the st conte	bility f ability xt soc	for them y to en	gage in
Topics	YOG		,,16										
Covered		Janu Paso Muo Layii Post Hala Post Meo Stan (Tria Vrika Pran Bano	isirsa chimo dra- V ng F cure), isana cure), ditatio ngle shasa nayan dha-	isana, ottanasai /ayu, Shu Posture// Ardhal- (Ploug Naukasa on- 'Om' Posture Posture ana (Tree na- Nadis	Ardh na, Sha unya, Pi Asanas- Ialasan h Pos ana (Bo medita e), Pai e Pose), sodha, a Bandl	naMats shanka rithvi, V - Shal a (Hal e), <u>M</u> nat Pos tion, K as- Arc shwał Garuc Shitali, ha, Mu	syendra asana, B Varuna, abhasa f Plou atsyasa ture), S undalin dhaCha dhaCha dhaCha a ture), S undalin dhaCha dhaCha dhaCha dhaCha dhaCha dhaCha dhaCha dhaCha dhaCha dhaCha dhaCha dhaCha dhaCha dha dhaCha dha dhaCha dha dhaCha dha dha dha dha dha dha dha dha dha d	sana Apan na (L gh Po na, i or Cl krsana na (Si Eagle Bhast	a, Hriday .ocust P ose), Sar SuptaVaj ana (Rela hakra Me a (Half N ide Ang	f-Spinal va, Bhair osture), vangasa rasana, axing Pos editation Wheel I le Post amari.	T av mu Dha na (S Chak se), M n, Man Postur ure),	Twist Idra. nurasan houlder krasana akaraasa atramedi re), Triko Padaha	Pose), a (Bow Stand), (Wheel ana. tation. onasana stasana,

 Discus throw, Javelin throw and Shot-put- Basic skill & Technique, Grip, Stance, Release & Follow through.
Field events marking.
General Rules of Track & Field Events.
BASKETBALL
 Shooting- Layup shot, Set shot, Hook shot, Jump shot. Free throw.
 Rebounding- Defensive rebound, Offensive rebound.
 Individual Defensive- Guarding the man without ball and with ball. Dividual Defensive- Guarding the man without ball and with ball.
Pivoting. Dulas of Reclustically
Rules of Basketball.
Basketball game.
VOLLEYBALL
• Spike- Straight spike, Body turn spike, Tip spike, Back attack, Slide spike, Wipe out
spike.
 Block- Single block, Double block, Triple block, Group block.
 Field Defense- Dig pass, Double pass, Roll pass.
 Rules and their interpretation.
FOOTBALL
 Dribbling- Square pass, Parallel pass, Forward pass.
• Heading (Standing & Running)- Fore head, Side fore head, Drop heading, Body
covering during heading.
• Kicking- Full volley, Half volley, Drop kick, Back volley, Side volley, Chiping (lobe).
• Tackling: Covering the angle, Chessing time sliding chese, Heading time shoulder
tackle etc.
• Feinting- Body movement to misbalance the opponent and find space to go with
ball.
Rules of Football.
CRICKET
Batting straight drive.
Batting pull shot.
Batting hook shot.
Bowling good length, In swing.
Bowling out swing, Leg break, Goggle.
Fielding drill.
Catching (Long & Slip).
Wicket keeping technique.
Rules & Regulation.
BADMINTON
 Net play- Tumbling net shot, Net Kill, and Net Lift.
Smashing.
• Defensive high clear/Lob.
• Half court toss practice, Cross court toss drop practice, Full court Game practice.
Player Positioning, Placements.
• Rules & Regulation.
Doubles & Mixed doubles match practice.

TABLE TENNIS
• Stroke: Backhand- Topspin against push ball, Topspin against deep ball, Topspin against rally ball, Topspin against topspin.
 Stroke: Forehand- Topspin against push ball, Topspin against deep ball, Topspin against rally ball, Topspin against topspin.
• Stroke- Backhand lob with rally, Backhand lob with sidespin, Forehand lob with rally, Forehand lob with sidespin.
 Service: Backhand/Forehand- Push service, Deep push service, Rally service.
• Service: Backhand sidespin (Left to right & Right to left).
• Service: Forehand- High toss backspin service, High toss sidespin service, High toss
reverse spin service.
Rules and their interpretations.
 Table Tennis Match (Singles & Doubles).
NCC
 FD-6 Side pace, Pace Forward and to the Rear.
 FD-7 Turning on the March and Wheeling.
 FD-8 Saluting on the March.
 FD-9 Marking time, Forward March and Halt in Quick Time.
FD-10 Changing step.
FD-11 Formation of Squad and Squad Drill.
• FD-12 Parade practice.
TAEKWONDO
Poomsae (Forms)- Jang, Yi Jang.
Self Defense Technique- Self defense from arms, Fist and Punch.
 Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring). Combination Taskaigue, Combined kick and punch
 Combination Technique- Combined kick and punch. Board Breaking (Kyokpa)- Sheet breaking.
 Interpretation Rules above Technique of Taekwondo.
NSS
No Smoking Campaign
 Anti- Terrorism Day Celebration
 Any other observation/celebration proposed by Ministry/institute
 Public Speaking
 Discussion on Current Affairs

Viva voce

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	-	PO3	PO4	PO5	, PO6	P07	–	PO9	PO10	PO11	PO12
course	605	. 01	102	105	104	105		107	100	105	1010	1011	1012
	CO1	-	-	-	-	-	2	-	-	3	-	-	-
	CO2	-	-	-	-	-	-	-	2	-	-	-	-
XXS52	CO3	-	-	-	-	-	-	1	-	-	-	-	3
	CO4	-	-	-	-	-	-	-	-	2	2	-	-
	CO5	-	-	-	-	-	3	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

		Department	of Mathem	atics						
Course	Title of the course	Program	Total Nu	mber of co	ntact hours		Credit			
Code		Core	Lecture	Tutorial	Practical	Total				
		(PCR) /	(L)	(T)	(P)	Hours				
		Electives								
		(PEL)								
MAC331	MATHEMATICS-III	PCR	3	1	0	4	4			
Pre-requisites	S	Course Ass	essment m	ethods (Co	ntinuous (C	T), mid-te	erm			
		(MT) and e	nd assessm	ent (EA))						
Basic knowled	dge of topics	CT+MT+EA								
included in M	IAC01 & MAC02.									
Course	CO1: Acqui	re the idea al	pout mathe	ematical fo	rmulations of	of pheno	mena in			
Outcomes	physics and	engineering.								
	• CO2: To u	nderstand th	ne commo	n numerio	al method	s to obt	ain the			
	approximat	e solutions fo	or the intra	ctable math	nematical pr	oblems.				
	CO3: To un	derstand the	basics of c	omplex an	alysis and it	s role in	modern			
	mathemati	cs and applied	d contexts.							
	CO4: To un	derstand the	optimizati	on methoc	ls and algor	ithms de	veloped			
	for solving	various types	of optimiza	ation proble	ems.					
Topics Covere	ed Partial Differen	ntial Equation	ns (PDE): Fo	ormation o	f PDEs; Lagr	ange me	thod for			
	solution of fi	rst order quasilinear PDE; Charpit method for first order ; Homogenous and Nonhomogeneous linear PDE with constant								
	nonlinear PDE;	Homogenou	s and Nonł	nomogeneo	ous linear Pl	DE with o	constant			
	coefficients: C	-	•		-					
	second order	linear PDE a	and canon	ical forms	; Initial &	Boundar	y Value			
	Problems invo	lving one din			ition, one c	limensior	nal heat			
	equation	and tw	o din	nensional	Laplace	e e	quation.			
	[14]									
	Numerical Met	-	•		•					
	Forward, Back			•						
	solutions of no	-	-		•	•				
	Newton-Raphs		-	-						
	integration; Eu			ified Eular			ing first			
	order different	ial equations.			[14	1]				
	Complex Anal	veie: Eurotia	ons of con	onley vari	ahla Limit	Continu	uity and			
	Derivative; Ana	-		-			-			
			n, nannun		, comorna		iniation			

THIRD SEMESTER

	and Bilinear transformation; Complex integration; Cauchy's integral theorem;
	Cauchy's integral formula; Taylor's theorem, Laurent's theorem (Statement
	only); Singular points and residues; Cauchy's residue theorem.
	[17]
	Optimization:
	Mathematical Preliminaries: Hyperplanes and Linear Varieties; Convex Sets,
	Polytopes and Polyhedra.
	[2]
	Linear Programming Problem (LPP): Introduction; Formulation of linear
	programming problem (LPP); Graphical method for its solution; Standard form
	of LPP; Basic feasible solutions; Simplex Method for solving LPP.
	[9]
Text Books,	Suggested Text Books:
and/or	
reference	1. An Elementary Course in Partial Differential Equations-T. Amarnath
material	2. Numerical Methods for scientific & Engineering Computation - M.K.Jain,
	S.R.K. Iyengar&R.K.Jain.
	3. Foundations of Complex Analysis- S. Ponnuswami
	4. Operations Research Principles and Practices- Ravindran, Phillips, Solberg
	5. Advanced Engineering Mathematics- E. Kreyszig
	Suggested Reference Books:
	1. Complex Analysis-L. V. Ahfors
	2. Elements of partial differential equations- I. N. Sneddon
	3. Operations Research- H. A. Taha

Mapping of CO (Course Outcome) and PO (Programme Outcome):

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs CO1	3	2			2		2			2	2	3
CO2	1	2	1	1			3		2	1		3
CO3	3			2		1	2		2			3

CO4	2	2	2	2		1	2	1	2	2
C04	Э	5	5	2		T	Z	T	Z	Э

	Departm	ent of Electronics an	d Commun	ication Engin	eering					
Course	Title of the course	Program Core	Total Nur	nber of cont	act hours = 5	56	Credit			
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total]			
		(PEL)	(L)	(T)	(P)	Hours				
ECC301	Network Analysis	PCR	3	1	0	4	4			
	and Synthesis									
Pre-requis	ites	Course Assessmer	nt methods:							
		Continuous (CT), N	/lid-Term (N	۸T), End Asse	essment (EA)					
Engineerir	ng Physics	The assessment	methods	comprise of	f quizzes, n	nultiple ch	oice typ			
(PHC01),		questions involvin	g real worl	d examples, a	and subjectiv	e question	s all eithe			
Mathemat	tics I and II	designed in google	e form or as	sessed throu	igh pen and p	oaper.				
(MAC01, N	/ACO2)									
Course	On successful co	mpletion of this cour	se, student	s should have	e the skills ar	nd knowled	ge to:			
Outcomes	CO1. Application	ns of network theore	ms and Lap	lace transfo	rm in A.C. an	d D.C circu	it analysis			
	time domain ana	lysis of simple RLC ci	rcuits, trans	sient analysis	i.					
		ory. Characterizatio		rt networks	and Z, Y, ABC	CD and h pa	arameters			
		os between the para								
		ation of two port n								
		applications, imag	e impedan	ce,character	istic impeda	nce and pr	opagatio			
	function	_			_					
	•	various types of attenuators and determination of insertion loss								
		rototype low pass, high pass, bandpass and bandstop filters, constant K-type								
		ter design concepts, application of filters. LC, RC and RL driving point admittance functions using Foster and Cauer first								
			ig point adr	nittance fun	ctions using I	-oster and	Cauer firs			
T	and second form			(1	T O L L N					
Topics		unctions and Transie	-	-	-		• • • • • • • • • • • • • • • • • • •			
Covered/		m Impedances,Netw				•				
Syllabus		works, concept of p s, time response and								
		s, applications of La	•	•	• • •					
		analysis of simple RL	•				ysis, 1111			
	Unit II: Two Port		9 hrs.+T=3h		7515.					
		rization of two port		-	nd h narame	ters Recin	rocity an			
		ry. Inter-relationship:			•		•			
		s, T & П Represe								
		ice, Characteristic im					in, ina ₈			
	Unit III: Network		=04 hrs +T=		in runetion					
		graph, Tree, Incidenc		•	cutsets and f	undament	al			
		ie set and cut set sc								
		basis and node basi					•			
		ix form – Duality, Co	-	•						
		tors (L=05 hrs.+ T=2								
		and scattering parameters, insertion loss. Various types of attenuators (Lattice,								
	-	networks).								
	Unit V: Filters	•	hrs.)							
	Filters: c									

	concepts, application of filters. Unit VI: Network Synthesis(L=07 hrs.+ T=3 hrs.) Hurwitz polynomials and properties – Positive real functions and its properties; definition and properties; properties of LC, RC and RL driving point functions, synthesis of LC, RC and RL driving point admittance functions using Foster and Cauerfirst and second forms.
Text Books, and/or Reference material	 Text Books: 1. E. Van Valkenburg, "Network Analysis", Prentice Hall of India 2. C. L Wadhwa, "Network Analysis and Synthesis" New Age International Publishers, 2007, 3. D. Roy Choudhury, "Networks and Systems" Wiley Eastern Ltd. 4. John D. Ryder, "Networks, Lines & Fields", 2nd edition, Pearson
	 Reference Books/materials: 1. B. C. Kuo, "Network Analysis and Synthesis", John Wiley 2. E. Van Valkenburg, "An Introduction to Modern Network Synthesis", Wiley Eastern Ltd. 3. A. Chakrabarti, "Circuit Theory" DhanpatRai& Co.

COURSE ARTICULATION MATRIX

Mapping	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	РО	PSO	PSO	PSO
СО	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	2	2	2	1	-	-	-	-	-	-	3	2	3	2
CO#2	3	3	2	3	2	-	-	-	-	-	-	3	3	2	2
CO#3	3	3	3	3	2	-	-	-	-	-	-	3	3	3	2
CO#4	3	2	2	3	2	-	-	-	-	-	-	2	3	3	2
CO#5	3	3	3	3	2	1	-	-	-	-	-	2	3	2	2
CO #6	3	2	3	3	2	-	-	-	-	-	-	2	2	2	2

Correlation levels 1, 2 or 3 as defined below:

	Department of Electronics and Communication Engineering Course Title of the course Program Core Total Number of contact hours = 56 Credit										
Course	Title of the course	Program Core	Total	Number of co	ontact hours	= 56	Credit				
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total					
		(PEL)	(L)	(T)	(P)	Hours					
ECC302	Electronic Devices	PCR	3	1	0	4	4				
	and Circuits-I										
Pre-requisi	ites	Course Assessmer	nt methods:								
		Continuous (CT), Mid-Term (MT), End Assessment (EA)									
Engineering	g Physics (PHC01),	The assessment methods comprise of quizzes, multiple choice type									
Electrical Te	echnology (EEC01),	questions involving real world examples, and subjective questions all									
Basic electr	onics (ECC01)	either designed in google form or assessed through pen and paper.									
Course	CO # 1. Understa	nding the fundamen	ital knowled	dge of analog	devices and	circuits					
Outcomes	CO # 2. To becor	ne familiar with the	design of	much more	complex elec	tronic cir	cuits with				
	the help	of those fundamenta	als.								
	CO # 3. Enriching	historical developm	ents with fa	acts that led	to this theory	y. Emphas	is is given				
	on IC tec	hnology but it origina	ates from va	acuum tube e	era.						
	CO # 4. To be aq	uatinted with the p	resent day	design tools	using which	one can s	synthesize				

	and analyze the complex design problems. CO # 5. Understanding the devices and circuits as a basic building block of electric
	communication and other areas and enhancing problem solving skills.
Topics	1. P-N Junction Diode:(4L+1T)
Covered	Qualitative Theory of P-N Junction, P-N Junction as a Diode, Diode Equation, Vol
	Ampere Characteristics, Temperature dependence of V-I characteristic, Ideal versi
	Practical – Resistance levels(Static and Dynamic), Transition and Diffusion Capacitance
	small Signal Model and Its Application, Diode Equivalent Circuits, Load Line Analys
	Breakdown Mechanisms in Semiconductor Diodes, Zener Diode Characteristics.
	2. Special Purpose Electronic Devices: (4L+1T)
	Principle of Operation and Characteristics of Tunnel Diode (with the help of Energy Bar
	Diagram), Varactor Diode, SCR and Semiconductor Photo Diode.
	3. Rectifiers and Filters :(4L+1T)
	The P-N junction as a Rectifier, Half wave Rectifier, Full wave Rectifier, Brid
	Rectifier, Harmonic components in a Rectifier Circuit, Inductor Filters, Capacitor Filte
	L- Section Filters, π - Section Filters, Comparison of Filters, Voltage Regulation usi
	Zener Diode.
	4. Bipolar Junction Transistor and UJT: (6L+2T)
	The Junction Transistor, Transistor Current Components, Transistor as an Amplifi
	Transistor Construction, BJT Operation, BJT Symbol, Common Base, Common Emitt
	and Common Collector Configurations, Limits of Operation, BJT Specifications, E
	Hybrid Model, Determination of h-parameters from Transistor Characteristi
	Comparison of CB, CE, and CC Amplifier Configurations, UJT and Characteristics; E
	small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response
	5. Transistor Biasing and Stabilization:(7L+2T)
	Operating Point, The DC and AC Load lines, Need for Biasing, Fixed Bias, Collect
	Feedback Bias, Emitter Feedback Bias, Collector - Emitter Feedback Bias, Voltage Divid
	Bias, Bias Stability, Stabilization Factors, Stabilization against variations in V _{BE} and β , Bi
	Compensation using Diodes and Transistors, Thermal Runaway, Thermal Stabili
	Analysis of a Transistor Amplifier Circuit using h – Parameters: AC Models: Bas
	Biased Amplifier, Emitter-Biased Amplifier, Small-Signal operation, AC Beta,
	Resistance of the Emitter Diode, Two Transistor models, Analyzing an Amplifier
	6. Field Effect Transistor:(7L+2T)
	The Junction Field Effect Transistor (Construction, principle of operation, symbol)
	Pinch-off Voltage - Volt-Ampere characteristics, The JFET Small Signal Model, MOSF
	(Construction, principle of operation, symbol), MOSFET Characteristics in Enhanceme
	and Depletion modes.
	FET Amplifiers: FET Common Source Amplifier, Common Drain Amplifier, Generaliz
	FET Amplifier, Biasing FET, FET as Voltage Variable Resistor, MOSFET small signal mode
	Analysis of CS, CG and CD amplifiers – Gain and frequency response- High frequer
	analysis. Comparison of BJT and FET amplifiers.
	7. Multistage Amplifiers: (6L+2T)
	Introduction; Amplifier frequency response, Gain Bandwidth product, Need for mul
	stage amplification; R-C coupled amplifiers, Cascode configuration
	8. Operational Amplifiers: (6L+2T)
	Basics of operational amplifiers, open loop and closed loop response, Application
	op-amps (Non-linear applications): viz, inverting and non inverting amplifiers, volta
	follower, adder, substractor, differentiator and integrator, Comparators, clippers a
	clampers, Schmitt triggers, precision rectifiers, peak detectors, Log and Antil-
	amplifiers, gyrator, Current to voltage and voltage to current converted
	Instrumentation and isolation amplifiers, transducer Bridge amplifiers. General op-an

	circuit design and detailed circuit description.
Text Books,	Text Books:
and/or	 J. Millman, C.C.Halkias, "Electronic Devices and Circuits"
reference	2. Thomas L. Floyd, "Electronic Devices", 8th Edition, Pearson Education Inc., 2007
material	Reference Books:
	1. Mohammad Rashid, "Electronic Devices and Circuits" Cengage Learing, 2013
	 Schilling and Belove, "Electronic Circuits: Discrete and Integrated", McGraw-Hill Education, 3rd Ed.
	 Robert Boylestad and Louis Nashelsky, " Electronic Device and Circuit Theory", PHI; 9th Edition, 2007
	4. A.S. Sedra and K.C. Smith, "Microelectronic Circuits", 6th Edition, Oxford University Press, 2006
	5. David A. Bell, "Electronic Devices and Circuits" 5 Ed, Oxford

COURSE ARTICULATION MATRIX

Mapping of	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO	PO	РО	PO	PSO	PSO	PSO									
со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#1	#1	#1	#1	#2	#3
										0	1	2			
CO#1	3	3	3	2	2	-	-	-	-	-	-	3	3	2	2
CO#2	2	2	3	2	3	1	-	-	-	-	-	2	2	3	2
CO#3	2	2	3	3	3	2	1	-	-	-	-	2	3	3	3
CO#4	2	3	2	3	3	-	-	-	-	-	-	-	3	3	2
CO#5	2	3	3	3	3	-	-	-	-	-	-	2	3	3	2

Correlation levels 1, 2 or 3 as defined below:

			Department of Ele	ctronics and C	Communicatio	n Engineering					
	Course	Title of	Program Core	Tota	I Number of c	contact hours :	= 42	Credit			
	Code	the	(PCR) / Elective	Lecture	Tutorial	Practical	Total				
		course	(PEL)	(L)	(T)	(P)	Hours				
	ECC303	Signals	PCR	3	0	0	3	3			
		and									
		Systems									
Prerequisites Course Assessment methods											
	(Continuous (CT), Mid-Term (MT), End Assessment (EA))										
	Mathemati	cs I and II	The assessment methods comprise of quizzes, multiple choice type questions								
	(MAC01, M	AC02)	involving real world examples, and subjective questions all either designed in								
			google form or as	sessed throug	h pen and pap	oer.					
	Course Out	comes	• CO1: To r	ealize the diff	erence betwe	en (i) continuc	ous and discre	te signals,			
			(ii) analog	g and digital sig	gnals.						
					nematical tecl nodulation and	hniques to so d sampling.	lve problems	involving			
	 CO3: Ability to apply mathematical transforms for signals and systems analysis. 							d systems			
			CO4: Ana	lysis of stable	LTI systems.						
L			• CO4: Ana	iysis of stable	LTT systems.						

	CO5: Practical realization of various forms of anti-al	iasing filters	5.
Topics Covered	Topic Details	<u>(No. of</u>	Course
mapped to Course		classes)	Outcomes
Outcomes	Classification of signals, basic operation on signals such as		<u>(COs)</u>
	time scaling and time shifting, elementary signals,	2	CO#1,
	impulse function, introduction to system properties such		CO#4
	as stability, memory, causality, invertibility, time		
	invariance and linearity.		
	Analyzing linear time invariant (LTI) systems through	5	
	convolution sum and convolution integral, correlation of		CO#2,
	signals, relation between convolution and correlation,		CO#4
	interconnection of LTI systems, relations between LTI	3	00.00
	system properties and impulse response, step response.		CO#2,
	Analyzing LTI systems through discrete time difference	0	CO#4
	equation and continuous time differential equation	8	
	models, natural response, forced response, transient	4	CO#3
	response and stability. Concepts on Fourier series, Discrete time Fourier series,	4	0#5
	Fourier transform and Discrete time Fourier transform.		CO#2,CO#
	Thorough analysis of the properties of Fourier	3	3, CO#5
	representations in connection with real time systems.	5	5, 00#5
	Relationship between the various Fourier		CO#2,
	representations, applications of Fourier representation to		CO#3,
	mixed signal classes, analyzing sampling of signals	5	CO#5
	through Fourier transforms.	Ū.	(Self-
	Discrete Fourier transform, properties of DFT, circular		Learning
	convolution, computations for evaluating the DFT,		Module)
	decimation in time and decimation in frequency FFT	4	CO#2,
	algorithms.		CO#3,
	Other essential transforms:		CO#4
	Hilbert transforms, properties of Hilbert transforms,	4	
	representation of complex envelope and bandpass		CO#3,
	signals.		CO#4
	Haar transform, wavelet functions, continuous and	4	
	discrete wavelet transforms, non-adaptive and adaptive		
	transform coding, wavelet coding.		CO#3,
	Complex frequency concept, Bilateral and Unilateral		CO#4
	Laplace transforms, properties, inversion, solving		
	differential equations with initial conditions, transfer		CO#2,
	function, causality and stability analysis, determining the		CO#4
	frequency response from poles and zeros.		(Self-
	Z transform, properties, inversion, transfer function,		Learning
	causality and stability, determining the frequency		Module)
	response from poles and zeros, computational structures		
	for implementing discrete time LTI systems.		
	Application to linear feedback systems, sensitivity and		

	distortion analysis, stability problem, Routh-Hurwitz criterion, Nyquist stability criterion, sampled data feedback systems.								
Text Books, and / or	Text Books:								
reference material	1. Signals and Systems Simon Haykin.								
	2. Principles of Linear Signals and Systems B.P.Lathi								
	3. Signals and Systems Tarun Kumar Rawat								
	Reference Books:								
	1. Signals and Systems: Schaum's Outline.								
	2. Discrete-Time Signal Processing Oppenheim, Schafer and Buck.								
	3. Digital Signal Processing Proakis and Manolakis.								
	4. a Wavelet tour of signal processing, The Sparse Way StéphaneMallat.								

COURSE ARTICULATION MATRIX

Марр	Mapping the Course Outcome (CO) to Programme Outcome (PO) and Programme Specific Outcome (PSO)														
PO/PSO CO	PO #1	PO #2	PO #3	PO #4	PO #5	РО #6	PO #7	PO #8	PO #9	PO #10	PO #11	PO #12	PSO# 1	PSO #2	PSO #3
CO#1	3	3	3	2	2	-	-	-	-	-	-	3	3	2	2
CO#2	1	2	3	3	3	-	-	-	-	-	-	3	3	2	2
CO#3	2	1	3	3	3	-	-	-	-	-	-	3	3	2	2
CO#4	2	3	3	3	2	-	-	-	-	-	-	3	3	2	2
CO#5	1	1	3	3	3	-	1	-	-	-	-	3	3	2	2

Correlation levels 1, 2 or 3 as defined below:

	Depa	rtment of Electronics	s and Comm	nunication E	Engineering			
Course Code	Title of the course	Program Core (PCR) / Elective	Lecture	Tutorial	ontact hours Practical	Total	Credit	
PHC331	Physics of Semiconductor Devices	(PEL) PCR	(L) 3	(T) 0	(P) 0	Hours 3	3	
Р	re-requisites	(Contin			nent method 1T) and end a	-	nt (EA))	
Engineering Physics (PHC01) CT+MT+EA								
Course Outcomes	At the end of the course, a student will be able to: CO1 .Describe the different electronic properties of semiconductor materials. CO2 . Understand the working principal of electronic devices (PN Diode, Photodetector, Solarcell, Light- EmittingDiodes, Laser Diodes, JFET, MOSFET, Tunnel Diode, Gunn Diode, IMPATT Diode, TRAPATT Diode and semiconductor memory). CO3 . Apply the knowledge of memory expansion to design required expanded memory for specific application.							
Topics Covered	Fundamentals of Semiconductor & SemiconductorDevicesFabrication: Introduction to crystal growth,							

	semiconductor, Effective masses of carriers in semiconductor, Fermi-Dirac distribution function,									
	Density of states, Carrier concentrations at equilibrium, Calculation of number density of carriers and									
	their temperature dependence, Effects of temperature on carrier concentrations, High field effects,									
	Hall effect, Lithography, Optical lithography and Electron beam lithography.									
	[14L]									
	Junction-Diode&OptoelectronicDevices: P-N junction, Contact potential, Banddiagram, Degenerate									
	semiconductors, Photodetector,Solarcell, Light-EmittingDiodes, Internal and external quantum									
	efficiency etc., Semiconductor Lasers, Population inversion at a junction, Emission spectra for P-N									
	junction Lasers.[3L]									
	Negative Conductance Microwave Devices: Materials for negative conductance devices, The Gunn									
	effect and related devices, The transferred electron mechanism, Transit time devices, The IMPATT									
	Diode, the TRAPATT Diode, TunnelDiode. [10L]									
	JFETandMOSFET: JunctionFieldEffectTransistors(JFET),Operation,I-VCharacteristics etc.,MOSstructure,									
	Different MOS structures, Operation of MOS at high and low frequency, Accumulation, Inversion,									
	strong inversion regions, Metal-OxideSemiconductor									
	FieldEffectTransistors(MOSFET),MOSFETasaCapacitor,MOSFETasa resistorandrelatedcircuits. [9L]									
	Semiconductor Memory Device:									
	Semiconductor memory bernet: Semiconductormemoryorganization,RandomAccessMemory(RAM)(staticanddynamic),CMOS									
	memorycircuits,ChargeCoupledDevices (CCD).[6L]									
Text Books,	Text Books:									
and/or	1. PhysicsofSemiconductorDevices,SMSZE.									
reference	2. SolidStateElectronicDevices,BenGStreetman & Banerjee									
material	3. Microwave Solid-State Devices, S Y Liao									
	Reference Books:									
	1. SemiconductorPhysicsand Devices,Donald A.Neamen.									
	2. Microwave Engineering, David M.Pozar.									
	3. IntegratedElectronics,Millman-Halkias.									

COURSE ARTICULATION MATRIX

Mapping CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome):

PQ/PSO	PO	РО	РО	PO	PO	PO	РО	PO	PO	PO	PO	PO	PSO	PSO	PSO
СО	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	1	2	1	-	1	1	1	-	-	-	2	-	-	1
CO#2	3	2	1	1	1	1	1	1	1	1	-	2	1	1	1
CO#3	3	3	2	1	1	1	1	1	1	1	1	1	2	2	1

Correlation levels 1, 2 or 3 as defined below:

	Department of Electronics and Communication Engineering								
Course	Title of the course	Program Core	Total Number of contact hours = 27 Crea						
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total			
		(PEL)	(L)	(T)	(P)	Hours			
ECS351	Network Analysis	PCR	0	0	3	3	1.5		
	and Synthesis Lab								
Pre-requisi	ites	Course Assessmer	nt methods:						
		Continuous (CT) and End Assessment (EA)							
Electrical	Fechnology (EEC01)	CT+EA							

Course	CO#1 Understand the basics of DC (direct current) circuits.
Outcomes	CO#2 Use Mutisim Simulator for circuit simulation
	CO#3 Able to apply network circuit theorems to analyze electrical circuits
	CO#4 Use an oscilloscope to measure frequency, period, voltage (magnitude, peak-to-
	peak, maximum, minimum, and etc), DC offset, etc, of the waveform
	CO#5 Understand the difference between over-damped, critically damped and under-
	damped circuits from the observation of step response.
Laboratory	1. Experiment with DC Measurements
experiments	2. Experiment with AC Measurements
covered	3. Experiment with Network Analysis Methods
	4. Experiment with First Order Circuits
	5. Experiment with Second Order Circuits
	6. Experiment with Sinusoidal Steady State
	7. Experiment with Series & Parallel Resonance
	8. Experiment with Transfer Functions
	9. Experiment with Frequency Response
	Approach: Laboratory experiments of this course are devoted to elementary design of
	linear circuits. In particular, time is devoted to (a) the transient voltage response of RC,
	RL and RLC circuits, (b) the sinusoidal steady-state response of RC, RL and RLC circuits,
	and (c) the frequency response of series RLC resonance networks, and the impacts on the
Tabbala	frequency response by varying capacitance and resistance.
Text Books,	Reference Books/ Materials:
and/or	1. B. C. Kuo, "Network Analysis and Synthesis", John Wiley
reference	2. E. Van Valkenburg, "An Introduction to Modern Network Synthesis", Wiley
material	Eastern Ltd.
	3. Teri L. Piatt (Author), Kyle E. Laferty, "Circuit Analysis Laboratory Workbook
	(Synthesis Lectures on Electrical Engineering) Lab Manual, Workbook Edition"
	Morgan & Claypool.
	4. Laboratory Instruction Manual.

COURSE ARTICULATION MATRIX

Mapping	of CO	(Cour	se Ou	tcome	e) to PO) (Progi	ramme	Outco	me) ar	nd PSO	(Progr	amme	Specific	Outcom	e)
PO/PSO	PO	PO	PO	PO	PO	PO	PO	РО	РО	РО	PO	PO	PSO	PSO	PSO
СО	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	2	1	2	1	1	-	-	-	1	1	-	1	2	1	1
CO#2	3	2	2	1	1	1	-	1	1	1	-	1	2	1	1
CO#3	3	3	3	1	1	-	-	-	1	1	-	1	3	3	2
CO#4	1	2	1	1	1	-	-	-	1	1	-	1	3	3	2
CO#5	2	3	1	2	1	-	-	-	1	1	-	1	2	3	2

Correlation levels 1, 2 or 3 as defined below:

	Departmen	t of Electronics and	Communica	ition Engine	ering					
Course Course Name Program Core Total Number of contact hours = 27 C										
Code		(PCR)/Elective	Lecture	Tutorial	Practical	Total				
(PEL) (L) (T) (P) Hours										

ECS352	Electronics and Circu		PCR	3	0	0	3	1.5					
Pre-requisi	ites		Course Assessmer Continuous (CT) a			۸)							
Decie Flact		1			essment (E	Aj							
	ronics (ECC01		CT+EA										
Course		•	owledge of identifyi	0 0									
Outcomes			ledge of designing li			alog circuits	using tran	sistor					
		•	ills to design amplifi										
		•	ills to implement and	-	-								
			equaintance to use e										
List of		-	nd set up the BJT c		•	-	-	der bias					
Experiment			rmine the gain band	•		• •	•						
	2.	•	and set up the BJT common collector amplifier using voltage divider bias										
			rmine the gain bandwidth product from its frequency response.										
	3.		n, setup and plot the frequency response of Common SourceJFET										
		•	andobtainthe bandwidth. nd test a 1 kHz relaxation oscillator using UJT										
		-			-								
		•	plication of Op-Amp		•	Ion-inverting	amplifier).					
		-	r and Differentiator	-	. Op-Amp								
			d Subtractor using O	• •									
			ble Multivibrator us	•									
			Aultivibrator using IC										
			rigger Circuit using I	C/41.									
			65 PLL Applications.										
		-	oltage Regulator using IC723. C phase shift & Wien Bridge oscillator using IC741.										
Toyt Books			-		Sing 10741.								
Text Books, and/or		ice Mater											
reference			an, Introduction to A	nalog& Dig	ital Circuits	Lab Manual,	kendall h	unt Pub					
material		Co, 2018											
material			. A., Electronics Lab	ivianuai (VC	DLUME 1 an	ia 2), PHI, Six	th Edition						
	3.	3. Departmental Lab Manual											

COURSE ARTICULATION MATRIX

Mapping of	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	РО	РО	PSO	PSO	PSO
со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	2	1	2	-	-	-	-	-	1	1	-	1	2	2	1
CO#2	2	3	3	2	1	-	-	-	1	1	-	1	2	3	1
CO#3	2	3	3	1	1	-	-	-	1	1	-	1	3	2	2
CO#4	1	2	3	2	1	-	-	-	2	1	-	1	3	2	2
CO#5	2	1	2	2	1	1	-	-	3	1	1	1	2	3	2

Correlation levels 1, 2 or 3 as defined below:

	Departme	nt of Electronics and	d Communi	cation Engir	neering							
Course	Title of the course	Program Core	Total I	Number of o	contact hours	5 = 24	Credit					
Code	Title of the course											

		(PEL)	(L)	(T)	(P)	Hours	
PHS381	Semiconductor Devices Laboratory	PCR	0	0	3	3	1.5
Ρ	Pre-requisites	(Continuc		Assessment on (CE) and	: methods l End Assess	ment (EA))	
Physics	Laboratory (PHS51)			CE+EA			
Course Outcomes	At the end of the cours CO1 . Calculate differer CO2 . Measure and unc CO3 . Draw the current efficiency.	nt characteristic para lerstand different ch	ameter of sonaracteristic	c of semicor	nductor devi	ces.	
Topics	List of Experiments:						
Covered	 To determine the Measurement or temperatures. Determination of dependence. To determine the magnet. Determination of Study of p-n junct Study of Zener dia Determination of 	f resistivity of ser of Hall coefficient value of e/m of an Stefan's constant. tion diode character ode characteristics a	miconducto of a give electron by istics. ind voltage	ers by fou en semicor using a cat regulator.	nductor and	d its tem	perature
Text	Text Books:				and Date 51		
Books, and/or reference material		course in practical p ctical Physics, B. Gho	•	• • •			

COURSE ARTICULATION MATRIX

Mapping CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome):

PO/PSO	PO	РО	PO	PO	PO	PSO	PSO	PSO							
СО	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	2	1	-	-	-	-	1	1	1	-	2	1	-	1
CO#2	3	2	1	-	-	-	-	1	1	1	-	2	1	-	1
CO#3	3	2	1	-	1	1	1	1	1	1	-	2	2	-	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

FOURTH SEMESTER

	Departmo	ent of Electronics ar	nd Commun	ication Engi	neering				
Course	Title of the course	Program Core	Total N	Number of c	ontact hours	= 56	Credit		
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total			
		(PEL)	(L)	(T)	(P)	Hours			
ECC401	Analog	PCR	3	1	0	4	4		
	Communication								

Pre-requisites		Course Assessment methods
		(Continuous (CT), Mid-Term (MT), End Assessment (EA))
Network Analy (ECC 301) Signal and Syst (ECC 303)	vsis & Synthesis tems	The assessment methods comprise of quizzes, multiple choice type questions involving real world examples, and subjective questions all either designed in google form or assessed through pen and paper.
Course Outcomes	At the end of	f the course, the students will be able to
	transmission of s CO2: Explain modulation sche CO3: Use vario FDM and super h CO4: Formulate justify related cir CO5: Differenti figure and noise random processe CO6: Assemble	d state the elements of communication systems and issues related to ignals through communication channels, radio wave propagation. time and frequency domain equations for all forms of amplitude mes and corresponding circuits, signals and spectra. ous analog pulse communication systems and solve problems related to neterodyne receiver. time and frequency domain equations for angle modulation systems and cuits, signals and spectra. ate between various types of noise, and compare noise resistance, noise te temperature and discuss probability theory, random variables and es with related significance in communication systems. complete analog communication system and formulate the expression of or different schemes of modulation.
Topics Covered	communicatio Communicatio 2. Amplitude Mo [12(L+T)] 3. Frequency Mo 4. Pulse Modulat 5. Probability, R WSS, Ergodic a 6. Noise. Noise	Advantages of Electrical communication; block diagram of an electrical on system, the fundamental limitation of communication systems. on channels and propagation characteristics [7(L+T)] dulation and Demodulation: DSB, SSB, VSB. Spectra, Circuits and Systems. dulation and Demodulation: Spectra, Circuits and Systems. [12(L+T)] tion: Sampling theorem and its proof. PAM, PWM, PPM [5(L+T)] andom Variable & Random Processes: Mean, Moments, ACF, PSD and and other random processes. [10(L+T)] Figure, Noise Temperature, Performance of Analog communication e presence of Noise. [10(L+T)]
Text Books, and/or reference material	 Modern Reference Books K. Sam S B. Sklar, 	of Communication Systems- H.Taub&D.L.Schilling (TMH). Digital and Analog Communication Systems- B.P.Lathi (Oxford). : hanmugam, Digital and Analog Communication Systems, Wiley. Digital Communications, PHI. & M. Moher, Introduction to Analog & Digital Communication, Wiley.

COURSE ARTICULATION MATRIX

Марріі	ng Coui	rse Ou	tcome	(CO) t	o Prog	ramm	e Outc	ome (PO) an	d Prog	gramm	e Spec	ific Out	come (P	SO)
PO/PSO CO	PO #1	PO #2	PO #3	PO #4	PO #5	PO #6	PO #7	PO #8	PO #9	PO #10	PO #11	PO #12	PSO# 1	PSO #2	PSO #3
CO#1	2	1	2	1	1	2	1	2	-	-	-	2	2	2	3
CO#2	2	2	3	3	2	-	-	-	-	-	-	2	3	2	2
CO#3	1	1	3	1	2	1	-	-	-	-	-	2	2	2	2

CO#4	3	3	2	2	2	-	-	-	-	-	-	2	3	3	3
CO#5	3	3	3	2	3	-	-	-	-	-	-	3	3	3	2
CO#6	2	3	2	3	2	1	2	-	-	-	-	2	3	3	2

Correlation levels 1, 2 or 3 as defined below:

	Dep	partment of Electror	nics and Com	munication E	ngineering							
Course	Title of	Program Core	Tota	l Number of o	contact hours	= 56	Credit					
Code	the	(PCR) / Elective	Lecture	Tutorial	Practical	Total						
	course	(PEL)	(L)	(T)	(P)	Hours						
ECC402	Digital	PCR	3	1	0	4	4					
	Circuits											
	and											
	Systems											
Pre-requisit	es	Course Assessme	nt methods	•								
		(Continuous (CT), Mid-Term (MT), End Assessment (EA))										
Electronic D	Devices and	The assessment r	methods com	prise of quiz	zes, multiple c	hoice type o	questions					
Circuits I (EC	C302)	involving real wo	rld examples	s, and subject	ive questions	all either de	signed in					
Basic Electro	onics	google form or as	ssessed throu	ugh pen and p	oaper.							
(ECC01)			99									
Course	• CO1 : U	nderstand rules of E	3oolean Alge	bra and use it	t for logic synt	hesis.						
Outcomes	• CO2: De	esign logic circuits	using switch	nes, transisto	rs and integr	ated circuit	building					
	blocks.											
		nderstand binary nu				arithmetic	circuits.					
		plain and implemer										
		arn sequential circu	•				ines.					
	• CO6 : Ur	nderstand principles	s of Error Det	ection and Co	orrection code	es.						
Topics		(L- 1 <i>,</i> T-1)										
Covered	Introductio	on: Definition of Ana	alog & Digita	I information	. Characterist	ics of Digita	l Circuits.					
	-	s of Digital systems.										
		(L-1 , T- 1)										
		gebra: Introduction	– rules of Bo	oolean Algebr	a, axioms, D'N	/lorgan's the	eorems					
		(L-2 , T- 1)										
	-	es: Basic Gates, U		es, Realizatio	on of logic ga	ates using	switches,					
		(MOS and BJT) as s	switch.									
		(L-4 , T-2)										
		hesis: Two level sy										
	-	ction by - i) Algebrai	ic method, ii)	Karnaugh Ma	ip method and	d III) Quinel	lccluskey					
	Method.	(1 4 7 2)										
		(L-4 , T-2)				المحجمات ما						
		onal Circuits: Multi	•	•		der, decode	er anver					
		using these combina		is and their a	pplications.							
	Module 6: (L-3, T-2) Digital Arithmetic: Number systems, Binary arithmetic, Representing negative numbers –											
	-	itude, 1's compleme		•		-						
	• •	er and Full adder C		•	•	-						
		of these circuits us		any auter and								
		(L- 6, T-4)	ang wuruple	ACI 3.								
		Circuits: Definition	n Floments	of sequentia	L circuite - La	tchas and I	Pagistara					
	Jequential	Circuits. Demittion	i, Liements	or sequentia	i circuits - Ld	unes and I	(egisters					

	Different kinds of flip-flops – R-S, J-K, Master-slave arrangement, D, and T type registers; Finite state machines - Moore and Mealy machines; Typical sequential circuits -counters, shift registers and sequence generator; synchronous and asynchronous circuits. Module 8: (L-4, T- 2) Multivibrator: Definition of different types of Multivibrators, their realization by logic gates, op-amp and transistors. 555 Timer IC. Module 9: (L-3, T- 2)
	A/D & D/A Converter: Different types of D/A & A/D Converters.
	Module 10: (L- 3, T-2) Codes and Code converters: Gray code, Excess-3 code, BCD Code, BCD to 7-segment decoder: Error Detection and Correction codes - error detection by parity checking, Principle of error correction, Hamming code. Module 11: (L- 4, T-2)
	Different logic families such as RTL, DCTL, DTL, HTL, TTL, ECL, MOS & CMOS logic family their importance and applications.
Text	Text Books:
Books, and/or	 M. Morris Mano, Digital Design, 3rd Edition, Prentice Hall of India Pvt. Ltd., 2003 / Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2003.
reference material	 Charles H.Roth. Fundamentals of Logic Design, Thomson Learning, 2004. ReferenceBooks:
	 John.M Yarbrough, Digital Logic Applications and Design, Thomson Learning, 2002. William H. Gothmann, Digital Electronics, 2nd Edition, PHI, 1982.
	3. Thomas L. Floyd, Digital Fundamentals, 8th Edition, Pearson Education Inc, New Delhi, 2005.
	4. Donald D. Givone, Digital Principles and Design, TMH, 2016.
	5. John F. Wakerly, Digital Design, Fourth Edition, Pearson/PHI, 2006.

COURSE ARTICULATION MATRIX

Марр	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO	PO	PO	РО	PO	РО	PO	РО	PO	PO	PO	PO	PO	PSO	PSO	PSO
со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	3	2	2	1	-	-	-	-	-	-	3	3	2	2
CO#2	2	3	3	3	2	-	-	-	-	-	-	2	3	2	1
CO#3	2	3	3	3	3	-	-	-	-	-	-	3	2	3	3
CO#4	2	3	3	3	3	-	-	-	-	-	-	2	3	2	2
CO#5	3	3	3	2	3	-	-	-	-	-	-	3	2	3	2
CO#6	1	2	3	1	1	-	-	-	-	-	-	2	1	3	2

Correlation levels 1, 2 or 3 as defined below:

	Department of Electronics and Communication Engineering											
Course	Title of the course	Program Core (PCR)	e (PCR) Total Number of contact hours = 56 Cred									
Code		/ Elective (PEL)	Lecture	Tutorial	Practical	Total						
			(L)	(T)	(P)	Hours						
ECC403	Electromagnetic Theory and	PCR	3	1	0	4	4					
	Transmission Lines											
Pre-requisit	tes	Course Assessment methods										
		(Continuous (CT), Mid-Term (MT), End Assessment (EA))										

Mathomatic	The according to the second methods comprise of quizzes multiple choice type
	The assessment methods comprise of quizzes, multiple choice type questions involving real world examples, and subjective questions all
	chnology (EEC01) either designed in google form or assessed through pen and paper.
Course	CO # 1. Understanding electromagnetic theory as a basic building block of electrical
Outcomes	communication and enhancing problem solving skills.
Outcomes	CO # 2. Enriching historical developments with facts that led to this theory. Emphasis on the fact
	that we are actually discussing Maxwell's electromagnetic theory.
	CO # 3. Enhancing theoretical knowledge from a clear viewpoint of phenomenon associated when
	charges are at rest, charges moving with constant velocity and during acceleration/ deceleration
	which is results in time harmonic fields.
	CO # 4. Understanding underlying aspect of radio wave propagation in various media, retarded
	potentials and concept of radiated waves.
	CO # 5. Assimilating the transmission line theory as a merger of filed theory and network theory.
	Imbibing the fundamental aspects of Telegrapher's equation and its essence in the analysis of
	transmission line parameters.
Topics	Historical foundations that led to Maxwell's electromagnetic theory [L-2]
Covered	Electrostatics: Coulomb's law and Field Intensity, Gauss's law- Maxwell's Equation, Application of
	Gauss's Law, Electric Potential. Electrostatic Boundary-Value Problem: Poisson's and Laplace's
	Equations, Uniqueness Theorem, Resistance and Capacitance, Method of Images. Electric Fields In
	Material Space: Properties of Materials, Convection and Conduction Currents, Polarization in
	Dielectrics, Dielectric Constant and Strength, Continuity Equation and Relaxation Time. [L-10; T-02]
	Magnetostatic Fields: Biot-Savart's Law, Ampere's Circuit Law-Maxwell's Equation, Application of
	Ampere's law, Magnetic Flux Density-Maxwell's Equation, Maxwell's Equations for Static Fields,
	Magnetic Scalar and Vector Potentials, Derivation of Biot-Savart's Law and Ampere's Law.
	Magnetic Forces, Materials, and Devices:Forces due to Magnetic Fields, magnetic Torque and
	Moment, A Magnetic Dipole, Magnetization in Materials, Classification of Materials, Magnetic
	Boundary Conditions, Inductors and Inductances, Magnetic Energy, Magnetic Circuits, Force on
	Magnetic Materials, Analogy between Electrostatics and Magnetostatics [L-8; T-02]
	Time Varying Fields, Waves, and Applications: Maxwell's Equations:Faraday's law, Transformer and
	Motional EMFs, Displacement Current, Maxwell's Equations in Final Forms, Time-Varying
	Potentials, Time-harmonic Fields.[L-8; T-02]
	Electromagnetic Wave Propagation: Wave Propagation in Lossy Dielectrics, Plane Waves in Lossless
	Dielectrics, Plane Waves in Free Space, Plane Waves in Good Conductors, Skin depth, Wave
	Polarization, Power and the Poynting Vector, Reflection of a Plane Wave at Oblique Incidence. [L-8;
	T-02]
	Transmission Lines: Introduction to different types of planar and non-planar guided media,
	Transmission line parameters, Telegrapher's equation, Input impedance, SWR, Power flow in
	transmission lines, Introduction to parallel plate and hollow metallic waveguides. [L-10; T-02]
Text	Text Book:
Books,	[1] Matthew O H Sadiku, <i>Principles of Electromagnetics</i> , 4/e, Oxford University Press.
and/or	Reference books:
reference	[1] E. C. Jordan and K. G. Balmain, <i>Electromagnetic Waves and Radiating Systems</i> , 2/e, PHI
material	(Addison Wesley).
	[2] J. D. Ryder, "Networks, Lines and Fields", Pearson
	[3] David. M. Pozar, <i>Microwave Engineering</i> , 2/e, 1998 (John Wiley & Sons).
	[4] S. Ramo, J. R. Whinnery, and T. Van Duzer, <i>Fields and Waves in Communication Electronics</i> ,
	3/e, John Wiley and Sons, 1994.
	[5] David K. Cheng, <i>Field and Wave Electromagnetics</i> , 2/e, 1989.
	[6] R. E. Collin, "Foundations for Microwave Engineering", John Wiley

COURSE ARTICULATION MATRIX

Mappi	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO	РО	РО	РО	РО	РО	РО	PO	РО	РО	РО	PO	PO	PSO	PSO	PSO
СО	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	2	1	2	1	2	2	1	1	1	1	1	1	2	1	1
CO#2	3	2	2	2	2	2	1	1	1	1	1	1	2	1	1
CO#3	3	3	3	1	1	2	1	1	2	2	1	1	3	3	2
CO#4	1	2	1	1	1	3	2	1	2	1	1	1	3	3	2
CO#5	2	3	1	2	1	1	1	1	2	1	1	1	2	3	2

Correlation levels 1, 2 or 3 as defined below:

		Departme	nt of Electronics and	-	ation Engin	eering							
Course	Ti	tle of the course	Program Core	Total N	umber of c	ontact hours	= 44	Credit					
Code			(PCR) / Elective	Lecture	Tutorial	Practical	Total						
			(PEL)	(L)	(T)	(P)	Hours						
EEC431	C	Control Systems	PCR	0	3	3							
Pre-requisit	tes		Course Assessment methods:										
For stars and as			Continuous (CT), Mid-Term (MT), End Assessment (EA)										
		sics (PHC01), ems (ECC303)	The assessment methods comprise of quizzes, multiple choice type questions involving real world examples, and subjective questions all either designed in google form or assessed through pen and paper.										
Course		At the end of the	course students will	be able to:									
Outcomes		CO1: Understand	the basic objectives	of control	system desi	gn.							
			t-output relationshi		•	-	ematical r	nodelin					
		governed by basi											
		CO3: Justify stat	ility of systems based on their transfer functions, time domain and										
		frequency domai											
		CO4: Develop co	ncepts on root pattern with variable gains and comment on the stability.										
		CO5: Determine	the stability of closed-loop system based on open loop frequency										
		response.											
		CO6: Design cor	ntrollers so as to meet design specifications both in time as well as										
		frequency domai		-									
		CO7: Realize the	ontroller both in software simulation through MATLAB coding as well as										
		in real-time envir	onment.			-	-						
Topics		Introduction to c	ontrol systems:[4L]										
Covered		Historical develo	pment, Open and Cl	osed loop s	ystems, Ap	plications, Ef	fects of fe	eedbacl					
		Types of feedbac	k control systems, Se	ervomechar	nism.								
		Mathematical M	odels of Physical Sys	stems:[4L]									
		Modeling of ele	ctrical networks, N	1odeling of	mechanic	al system e	ements,	Transfe					
		functions, Block o	liagram Algebra, Sigi	nal flow gra	ph and Mas	son's Gain fo	rmula.						
		Introduction to S	tate Variable Appro	ach:[4L]									
		Concepts of state	, state variables and	state mode	el state mo	dels for linea	r Continue	ous-tim					
		systems, state tra	insition matrix.										
		Representation	of Control Compone	nts: [2L]									
			nents, Mechanical components, Electromechanical Components.										
		Electrical compor	ients, Mechanical co	imponents,	Lieutionie	lianical Com	ponents.						
		•	ients, Mechanical co alysis and design spe	•			ponents.						
		Time domain ana		cification o	of linear sys	tems:[8L]		d highe					

	adding poles and zeros to transfer functions, P, PI, PD and PID controllers. Concepts of Stability and Algebra Criterion :[4L] Concept of stability, characteristic equation necessary conditions for stability, Routh- Hurwitz stability criteria. Root Locus Technique :[4L] The root locus concept, construction of Root Loci, Important properties parameters design
	byRoot locus method, Root-locus Plots with MATLAB. Frequency Response Analysis and Stability Studies in Frequency Domain :[10L] frequency domain specifications, correlation between time and frequency response, Polar plots, Bode plots, Nyquist stability criterion, Relative stability, Conditionally stable system, M and N loci on complex and gain phase plan MATLAB tools and case studies. Design and Compensation Technique :[4L] Preliminary considerations of classical Design, Realization of Basic compensators, Frequency domain and S-plane design techniques,Example of control systems. Design with MATLAB.
Text Books, and/or reference material	 Text Books: 1. J. Nagrath and M Gopal, Control system Engineering, New Age International Publishers 2. K. Ogata, Modern Control Engineering, Prentice Hall. 3. B. C. Kuo, Automatic control system, John Wiley & Sons Reference Books: 1. Norman S. Nise, Control system Engineering, John Wiley & Sons 2. B. Shahian and M. Hassul, Control System Design using MATLAB, Prentice Hall.

COURSE ARTICULATION MATRIX

Mappi	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO	РО	РО	РО	РО	PO	РО	РО	PO	РО	РО	РО	РО	PSO	PSO	PSO
со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	3	3	3	2	1	1	-	-	-	-	2	3	2	2
CO#2	3	3	2	3	2	-	-	-	-	-	-	1	3	2	2
CO#3	3	3	3	2	2	-	-	-	-	-	-	3	3	2	2
CO#4	3	3	3	2	2	-	-	-	-	-	-	3	3	2	2
CO#5	3	3	3	2	2	-	-	-	-	-	-	3	3	2	2
CO#6	3	2	3	3	3	1	1	1	-	-	-	2	3	3	2
CO#7	3	2	3	3	3	1	-	1	-	-	-	1	3	3	2

Correlation levels 1, 2 or 3 as defined below:

	Departmo	ent of Electronics ar	nd Commun	ication Engi	neering					
Course	Title of the course	Program Core	Total N	Number of c	ontact hours	= 24	Credit			
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total				
		(PEL)	(L)	(T)	(P)	Hours				
ECS451	Analog	PCR	0	0	3	3	1.5			
	Communication									
	Laboratory									
Pre-requis	ites	Course Assessment methods								
		Continuous (CT) and end assessment (EA)								
Network A	nalysis & Synthesis	CT+EA								
(ECC301)										

Course	CO1: Understand the fundamentals to explain the functionality of modulation and
Outcomes	demodulation.
	CO2: Analyze the concepts, write and simulate the concepts of AM and AM
	Demodulation process in Communication.
	CO3: Know FM and FM-Demodulation process in communication.
	CO4: Discriminate the AM and FM functionalities. Interpret with various angle modulation
	and demodulation systems.
	CO5: Create the simulation environments in PAM, PWM, PPM and verification of circuit
	and waveform in software platform.
Labs	12. To generate amplitude modulated wave and determine the percentage modulation.
Conducted.	13. To demodulate the modulated wave using envelope detector.
	14. To observe the output waveform of each block of super heterodyne receiver.
	15. To measure modulation index in FM and show the demodulated waveform.
	16. To perform pulse amplitude modulation and demodulation
	17. To perform pulse position modulation and demodulation
	18. To perform pulse width modulation and demodulation
	19. To observe DSB, DSB-SC, SSB waveforms in time domain and frequency domain in
	MATLAB platform.
	20. To observe DSB, DSB-SC, SSB waveform in time domain and frequency domain in
	MATLAB platform.
	21. To design transmitter and receiver circuit for amplitude modulation using discrete
	components.
	22. To design transmitter and receiver circuit for frequency modulation using discrete
T 1 D 1	components.
Text Books,	Text Books:
and/or	3. Morden Analog & Digital Communication System- B.P. Lathi
reference	4. Digital and Analog Communication Systems – K. Sam Shanmugam.
material	5. Principle of Communication Systems- Taub& Schilling.
	Reference Materials:
	6. Lab instruction manual
	7. Instruction manuals provided by manufacturer

COURSE ARTICULATION MATRIX

Марр	Mapping ofCourse Outcome (CO) to Programme Outcome (PO) and Programme Specific Outcome (PSO)														
PO/PSO	РО	РО	РО	РО	PO	РО	РО	РО	РО	РО	РО	РО	PSO#	PSO	PSO
со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	1	#2	#3
CO#1	3	2	1	1	-	-	-	-	-	1	1	1	2	2	2
CO#2	3	3	2	2	1	-	-	-	-	1	-	-	2	3	2
CO#3	3	3	2	2	1	-	-	-	-	1	-	-	2	2	2
CO#4	3	2	-	1	-	-	-	-	-	-	-	-	2	1	1
CO#5	2	2	2	3	3	-	-	-	-	1	1	1	3	3	3

Correlation levels 1, 2 or 3 as defined below:

	Departme	nt of Electronics and	d Communi	cation Engine	ering							
Course	Title of the course	Program Core		Number of co	-	= 30	Credit					
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total	create					
couc		(PEL)	(L)	(T)	(P)	Hours						
ECS452	Digital Circuits and	PCR	0	0	3	3	1.5					
LC3432	Systems Laboratory	ren	0	U	5	5	1.5					
Pre-requisit		Course Assessmer	t methods									
i i e i equisit	65	Continuous (CT), E										
Basic Electro	onics (ECC01)	The assessment r			lizzes and m	ultinle ch	oice type					
Dusie Liceti		questions based o		• •		•						
Course	After conducting	the laboratory expe		-		perment						
Outcomes	-	digital circuits as ba				municatio	n. control					
outcomes		nced problem solvir				manicacio						
		ledge of historical d	-	ts with facts	that led to th	is theory	eading to					
	Integrated Circuit	-				,						
	U U	develop complex dig	tital circuits	for electroni	cs appliances	5.						
	U U	osystems for the des			••							
Topics	Experiment :1	,	0 0	·								
Covered	•	adder and half subt	ractor circu	it using nand	gates only.							
	-	t even / odd parity c		-								
	Experiment: 2			-	-							
	2.1Realization of	multiplexer as unive	ersal logic ga	ate.								
	2.2 Design full ad	lder and full subtrac	tor circuit u	sing4:1 multi	iplexer							
	Experiment: 3											
	3.1 Realising a bo	to decimal decoder circuit using decoder driver and seven segment led										
	display.											
	3.2 Verifying the f	function table of 8 to	o 3 line prio	rity encoder.								
	Experiment: 4											
	_	bit one's compleme										
	e e	bit two's compleme	•	-	actor circuit.							
	-	and five bit digital n	nagnitude c	omparator.								
	Experiment: 5											
		excitation table of J-K flipflop.										
		f excitation table of	• •									
	- · ·	e flip flop from D ty	pe flipflop.									
	Experiment: 6			1 (I								
	• ·	chronous up counter	•	• •								
		ronous up counter u	ising D flipf	lop.								
	Experiment: 7	chronous decade co	untar IC 71	00 in differen	at madas							
			-			forant m	doc					
	Experiment: 8	chronous binary cou		a to counter	IC 7495 III UI	inerent int	Jues.					
	-	ronous decade cour	nter IC 7/14	0 in different	t modes							
		onous decade counter IC 74160 in different modes. onous up / down counter IC 74192.										
	Experiment: 9	nous up / down counter ic /4152.										
	-	t read / write memo	rv									
		universal shift regist	-									
	Experiment: 10											
	-	it arithmatic logic unit.										

Text Books,	Text Book:
and/or	1. M. Morris Mano, Digital Design, 3rd Edition, Prentice Hall of India Pvt. Ltd., 2003 / Pearson
reference	Education (Singapore) Pvt. Ltd., New Delhi, 2003.
material	Reference Books:
	1. John.M Yarbrough, Digital Logic Applications and Design, Thomson Learning, 2002.
	2. Charles H.Roth. Fundamentals of Logic Design, Thomson Learning, 2004.
	3. William H. Gothmann, Digital Electronics, 2nd Edition, PHI, 1982.
	4. Thomas L. Floyd, Digital Fundamentals, 8th Edition, Pearson Education Inc, New Delhi,
	2005
	5. Donald D. Givone, Digital Principles and Design, TMH, 2016.
	6. John F.Wakerly, Digital Design, Fourth Edition, Pearson/PHI, 2006.

COURSE ARTICULATION MATRIX

Map	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO CO	PO #1	PO #2	PO #3	РО #4	PO #5	PO #6	PO #7	PO #8	PO #9	PO #10	PO #11	PO #12	PSO #1	PSO #2	PSO #3
CO#1	3	2	1	1	-	-	-	-	-	1	1	1	2	2	2
CO#2	3	3	2	2	1	-	-	-	-	1	-	-	2	3	2
CO#3	3	3	2	2	1	-	-	-	-	1	-	-	2	2	2
CO#4	3	2	-	1	-	-	-	-	-	-	-	-	2	1	1

Correlation levels 1, 2 or 3 as defined below:

	Departmen	t of Electronics and (·	tion Engine	ering					
Course	Title of the course	Program Core	Total N	lumber of c	contact hours	5 = 30	Credit			
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total				
		(PEL)	(L)	(T)	(P)	Hours				
EES481	Control Systems	PCR	0	0	3	3	1.5			
	Laboratory									
Pre-requis	ites	Course Assessmer	nt methods							
		Continuous evalua	ation (CE) ai	nd End Asse	essment (EA)					
ECC303(Si	gnals and Systems)	CE+EA								
Course	 CO1: Το ι 	understand the dyna	mic behavio	our of real-t	time systems					
Outcomes	 CO2: To s 	imulate physical sys	tems in rea	l-time envir	onment.					
	• CO3: To c	design control syster	n to improv	e the perfo	rmance char	acteristics	of real-			
	time syst	ems.								
	• CO4: To c	determine the paran	neters and t	ransfer fun	ction of phys	sical syste	ms from			
	real-time	experimentation.								
		get acquainted with	-	-	-					
		te, analyze and desig	gn of contro	ol system de	esign for diffe	erent plan	ts under			
	considera									
Topics		C Servo Speed Cont	•							
Covered		C Servo Position Co	-	n						
		emperature Control	•							
		ead and Lag Networ								
		, PI and PID controll								
		tudy of Different rea		-			В			
	8. P	ID Design Method fo	or DC motor	Speed Cor	ntrol using M	ATLAB				

	9. Root Locus Design Method for DC motor Speed Control using MATLAB 10. DC motor Speed Control Based on Frequency Response using MATLAB
Text Books,	Text Books:
and/or	1. J. Nagrath and M Gopal, Control system Engineering, New Age International
reference	Publishers.
material	2. K. Ogata, Modern Control Engineering, Prentice Hall
	Reference Books:
	1. B. Shahian, M. Hassul, Control System Design using MATLAB, Prentice Hall.
	2. Laboratory instruction manuals.

COURSE ARTICULATION MATRIX

Mappi	Mapping Course Outcome (CO) to Programme Outcome (PO) and Programme Specific Outcome(PSO)														
PO/PSO	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO	PO	PSO	PSO	PSO
со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	3	3	3	2	1	1	-	-	-	-	2	3	2	2
CO#2	3	3	2	3	2	-	-	-	-	-	-	1	3	2	2
CO#3	3	3	3	2	2	-	-	-	-	-	-	3	3	2	2
CO#4	3	3	3	2	2	-	-	-	-	-	-	3	3	2	2
CO#5	3	3	3	2	2	-	-	-	-	-	-	3	3	2	2

Correlation levels 1, 2 or 3 as defined below:

FIFTH SEMESTER

		t of Electronics and										
Course	Title of the course	Program Core	Total N	lumber of o	contact hours	= 56	Credi					
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total						
		(PEL)	(L)	(T)	(P)	Hours						
ECC501	Digital	PCR	3	1	0	4	4					
	Communication											
Pre-requisi	tes	Course Assessmer	nt methods:									
		(Continuous (CT),	Mid-Term (MT), End As	ssessment (E	A))						
Analog Com	munication (ECC401)	The assessment i					ice typ					
0		questions, and su		•	•	•						
		or assessed throug	•		0	0	J					
Course	CO1:Acquire	idea about analog t										
Outcomes	-	tand simultaneous t	-		ignals							
outcomes		ommunication techr		-	-							
			-									
		and mitigate interf										
		ommunication techr	•									
		ntiate between diffe	-		-							
		stand the basic conc	•		eory, Source	and Chani	nel					
	-	nnel Capacity and re		-								
		basics of random pro	ocess, mode	eling and ar	alysis of syst	ems with	randor					
	signal											
Topics	Module 1: Introd	uction to digital cor	nmunicatio	n [3 hrs.]								
Covered												
	Module 2:Review	v of random process	[5 hrs.]									
	Basic definition, S	tationarity, Ergodicity, autocorrelation, cross correlation, power spectral										
	density, Response	e of Linear systems to Random inputs, Gaussian process, Narrow band										
	noise, Rayleigh po											
	Module 3:Wavef	orm coding [12 hrs.]										
	PCM – generatior	n, regenerative trans	mission, de	tection; Lin	ear quantiza	tion, quar	ntizatio					
	noise, non-unifor	m quantization, com	panding; C	hannel nois	e and error p	probability	; TDM,					
	PCM-TDM hierard	chy; Delta modulatic	on, adaptive	delta mod	ulation.							
	Module 4:Baseba	and transmission [12	2 hrs.]									
	Line coding – type	es, criterions for cho	osing a line	code, pow	er spectra; IS	I, Nyquist						
	criterion for zero	ISI, eye pattern; Mit	igation of IS	61 – raised c	osine filterin	g, equaliza	ation.					
	Matched filter.											
	Module 5: Passba	and transmission [12	2 hrs.]									
	Relation betweer	n amplitude, time pe	riod, and er	nergy, chara	acterization c	of noise, si	gnal					
	space representa	tion; Binary modulat	tions – ASK,	PSK, FSK. C	QPSK, MSK; G	eneration	,					
	detection (cohere	rent/ non-coherent), power spectra, and error probability of digital CW										
	modulations.		-			-						
	Module 6: Inforn	nation theory and co	oding [12 hr	rs.]								
		nation, Entropy, Joir		-	opy, Self and	Mutual						
		nnel capacity and Sh					o codin					
	Information, Cha						e coum					
			man coding	; Coding fo	r error corre							
	theorem, variable	e length coding, Huff	-	-		ction – No	oisy					
	theorem, variable coding theorem,	e length coding, Huff parity checking, Han	-	-		ction – No	oisy					
Text Books	theorem, variable coding theorem, Linear block code	e length coding, Huff parity checking, Han	-	-		ction – No	oisy					
	theorem, variable coding theorem, Linear block code , Text Books :	e length coding, Huff parity checking, Han s.	nming code	, Generator	and Parity C	ction – No heck Mati	oisy					
and/or	theorem, variable coding theorem, Linear block code , Text Books : 1. Introduction to	e length coding, Huff parity checking, Han s. o Analog & Digital Co	nming code	, Generator	and Parity C	ction – No heck Mati	oisy					
Text Books and/or reference material	theorem, variable coding theorem, Linear block code , Text Books : 1. Introduction to	e length coding, Huff parity checking, Han s. o Analog & Digital Co unication - J. G. Proa	nming code	, Generator	and Parity C	ction – No heck Mati	oisy					

- 1. Digital Communications S. Haykin.
- 2. Modern Digital and Analog Communication Systems B. P. Lathi, Z. Ding.
- 3. A First course in Digital Communications H. H. Nguyen, E. Shwedyk.
- 4. Principles of Communications R. E. Ziemer, W. H. Tranter.
- 5. Principles of Communication Systems H. Taub and D. L. Schilling.
- 6. Digital and Analog Communication Systems K. S. Shanmugan.
- 7. Digital and Analog Communication Systems L. W. Couch.
- 8. Digital Communications B. Sklar.
- 9. Theory and Design of Digital Communication Systems T. T. Ha.

COURSE ARTICULATION MATRIX

Mappin	g of CC) (Cou	rse O	utcom	e) to	PO (P	rograr	nme (Outco	me) an	d PSO	(Progran	nme Speci	fic Outcor	ne)
PO/PSO	PO	PO	PO	РО	РО	РО	PO	РО	РО	PO	РО	РО	PSO	PSO	PSO
СО	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	2	3	2	2	3	1	1	1	1	1	1	3	2	2
CO#2	2	2	2	3	2	3	2	1	1	1	2	1	2	3	3
CO#3	3	2	2	2	3	2	2	1	1	1	1	1	2	3	2
CO#4	2	3	3	3	3	2	1	1	1	2	1	2	3	2	2
CO#5	3	2	2	2	3	2	2	1	1	1	1	1	2	3	2
CO#6	2	3	2	3	2	2	1	1	1	2	2	1	3	2	3
CO#7	3	3	3	3	2	2	1	1	1	1	1	1	3	2	3
CO#8	3	3	3	3	2	2	1	1	1	1	1	1	3	2	2

Correlation levels 1, 2 or 3 as defined below:

	Departme	nt of Electronics and	d Communio	cation Engine	ering						
Course		Program Core	Total	Number of co	ontact hours	= 42					
Code	Title of the course	(PCR) / Elective	Lecture	Tutorial	Practical	Total	Credit				
Coue		(PEL)	(L)	(T)	(P)	Hours					
ECC502	Microwave	PCR	2	1	0	3	3				
	Engineering		2	-	0	5	5				
P	re-requisites	Course Assessment methods									
F	Pre-requisites	(Continuous (CT), Mid-Term (MT), End Assessment (EA))									
Electrom	nagnetic Theory and	CT+MT+EA									
Transmi	ssion lines (ECC403)										
Course	CO1: Understand	behaviour of transn	nission lines	and wavegu	ides, gain co	mplete kn	owledge				
Outcomes	about Microwave	components.									
	CO2: Analyze and	alyze and explain the characteristics of microwave passive components.									
	CO3: Analyze and	explain the charact	eristics of m	nicrowave act	tive compone	ents and ci	ircuits.				
	CO4: Acquire knowledge about the measurements at microwave frequencies.										

Topics Covered	Module – I: $(L - 2; T - 1)$ Wave Propagation in Unbounded and Bounded Media: Classification of Waves - TEM Waves, TE Waves and TM Waves, Parallel Plate Waveguide – TEM modes, TE modes, and TM modes; Solution techniques for modes and boundary conditions, Wave Velocities - Phase Velocity, Group Velocity, Energy-Flow Velocity. [T1] Module – II: $(L - 6; T - 3)$
	Waveguides: General properties of rectangular and circular waveguides, Solution of wave equation – TE Modes, TM Modes, power transmission, power losses, excitation of modes, characteristics of standard rectangular waveguides.
	Solution of wave equation – TE Modes, TM Modes and TEM modes in circular waveguide, power transmission, power losses, excitation of modes, characteristics of standard circular waveguide [T1, T2]
	Module – III: (L – 2)
	Dielectric waveguide and surface wave: Surface Waves on a Grounded Dielectric Slab – TM Modes, TE – Modes. [T1, T2] Module – IV: (L – 2; T - 1)
	Impedance Matching: Concept of impedance in guided waves, Smith-chart and its use, Impedance matching techniques - quarter wave transformer, single stub, double stub. [T2 and T3]
	Module – V: (L – 3; T -1)
	Microwave Resonators: Rectangular Waveguide Cavity resonators - Resonant Frequency, Q
	 – factor; Circular Waveguide Cavity resonators - Resonant Frequency, Q – factor; Dielectric Resonators - Resonant Frequency; Excitation of Resonators. [T1, T2]
	Module – VI: (L – 3; T - 1)
	Microwave Network Theory: Equivalent Voltages and Currents, The Concept of Impedance, Impedance and Admittance Matrices, Scattering parameters, Signal Flow Graphs, ABCD Matrix [T1]
	Module – VII: (L – 3; T -1) Microwave Passive Components: E-plane Tee, H-plane Tee, Magic Tee, Hybrid ring, circulator, isolators, Attenuator, Phase-shifter, directional coupler, slotted section, windows (Capacitive and Inductive), Irises. [T1, T2] Module –VIII: (L – 4; T -2)
	Microwave Solid-state Devices: Solid state microwave sources based on IMPATT diode, TRAPATT Diode, Gunn diode, Tunnel diode, Detectors and mixers: PIN diode, Schottky Diode, Varactor, diode, Step recovery diode. [T2]
	Module – IX: (L – 3; T - 1) Microwave Vaccum Tube Devices: Microwave Amplifiers: Klystron amplifiers, TWT – space TWT and Helix TWT, Magnetron. [T2] Module – X: (L – 2; T - 1)
	Microwave Measurement and Communication: Measurement of microwave power, impedance, standing wave, frequency and phase-shift. Microwave antenna, Line of sight propagation, microwave links, satellite communication. [T3]
Text Books,	Text Books:
and/or	T1. D M Pozar, "Microwave Engineering", Fifth Edition, Wiley India, New Delhi, India,
reference material	2005. T2. Liao, Samuel Y., "Microwave devices and circuits 3/E", Pearson Education India, 1989. T3. Collin, Robert E., "Foundations for microwave engineering 2/E", John Wiley & Sons, 2007.
	Reference Books:
	R1. Radmanesh, Matthew M., "Radio frequency and microwave electronics illustrated", New Jersey: Prentice Hall, 2001.

R2. CA Balanis, Advanced Electromagnetic Engineering, John Wiley, New York, 2003.
R3. Cheng, David Keun, "Field and wave electromagnetics", Pearson Education India,
1989.

COURSE ARTICULATION MATRIX

Mappi	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO	РО	PO	РО	PO	PO	PSO#	PSO#	PSO#							
со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	1	2	3
CO#1	3	2	1	1	1	1	1	1	-	-	-	1	3	1	2
CO#2	3	2	2	2	2	-	-	-	-	-	-	1	3	2	2
CO#3	3	2	2	2	2	1	-	1	-	-	-	1	2	2	3
CO#4	3	2	1	1	1	1	1	1	-	-	-	1	3	2	3

Correlation levels 1, 2 or 3 as defined above:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) and "-" if there is no correlation.

	Department	t of Electronics and (Communica	tion Engine	ering					
Course		Program Core	Total N	lumber of c	ontact hours	5 = 56				
Code	Title of the course	(PCR) / Elective	Lecture	Tutorial	Practical	Total	Credit			
COUE		(PEL)	(L)	(T)	(P)	Hours				
ECC503	Microprocessors and Microcontrollers	PCR								
Р	re-requisites	Course Assessment methods: (Continuous (CT), Mid-semester assessment (MA) and End Assessment (EA)):								
Digital Ci	rcuits and Systems (ECC402)	CT+MT+EA								
Outcomes	 and Microcontinuity CO2 Understant based systems at CO3 Apply the devices and derected of the tar CO4 Analyze de appropriate ass CO5 Evaluate the CO6 Design of Microprocessor 	he fundamental oper roller's as well as and Microcontrolle d the performance and select appropriate the knowledge of monstrate the progreget microprocessor lifferent problems embly language pro- the machine codes to necessary I/O and and Microcontrolle	identify the r based pro- of Microproce- ate platform Microproce- gramming p and microce- on micropr grams. providesol d Memory	e peripher blems. bcessor (808 to meet sp essors, Mic proficiency ontroller. ocessors an utions to th interfacin	als to be u 35 & 8086) a pecified requ crocontroller using the v nd microcon ne real-world g circuitry	sed for the sed fo	he given ontroller eripheral struction nd write			
Topics Covered	Module – I: (L – 6; T – Introduction to Micro concept; Evolution of programming with 80 Module – II: (L –7; T – Microprocessor 808 signal description,	Dprocessor: Basic co Microprocessors, 8 085.[CO#1, 2, 3, 4, 6] 3)	085 Archite ; [T1]	cture, draw	backs and Ir	struction	sets and			

	operation, I/O addressing capability, special purpose activities, Minimum mode, maximum mode of 8086 system and timings, the processor 8088, Programming Model, machine language instruction formats, addressing modes, instruction set, assembler directives and operators. Macros and Simple Programs involving Logical, Branch and Call Instructions, Sorting, String Manipulations. [CO#1, 2, 3, 4, 6]; [T1, T2, R1, R2] Module – III: $(L - 5; T - 2)$
	Programming with 8086: Machine level programs, programming with an assembler, Assembly language programs, and introduction to stack, stack structure of 8086/8088, interrupts and interrupt service routines, interrupt cycle of 8086, non-mask able interrupt and mask able interrupts, interrupt programming, The coprocessor 8087. [CO# 3, 4, 5];[T2, R1, R2] Module – IV: (L – 6; T - 2) I/O And Memory Interface: LCD, Keyboard, External Memory RAM, ROM Interface,
	ADC, DAC Interface to 8051. Serial Communication and Bus Interface: Serial Communication Standards, Serial Data Transfer Scheme, On board Communication Interfaces-I2C Bus, SPI Bus, UART; External Communication Interfaces-RS232,USB. [CO#1, 3, 6]; [T2, R2] Module – V: (L – 6; T - 2)
	Programmable Peripheral Interfacing: Description and programming of Intel 8255, 8257, 8155, 8253, 8251 and 8259A, 8279A etc.[CO#1, 3, 6];[T2, R1] Module – VI: (L – 1)
	Development of Processors: 80186, 80386, RISC.[CO# 1, 5]; [T2, R2] Module – VII; (L – 5; T - 2)
	Microcontrollers: Introduction, Overview of 8051 Microcontroller, Architecture, I/O Ports, Memory Organization, Addressing Modes and Instruction set of 8051. 8051 Real Time Control: Programming Timer Interrupts, Programming External Hardware Interrupts, Programming the Serial Communication Interrupts, Programming 8051 Timers and Counters, assembly language programming tools.[CO#1, 3, 4, 6]; [T3, R3] Module – VIII: (L – 2)
	PIC Microcontrollers: Introduction, Architecture, ALU, Program memory, register, Instruction Interrupts, Peripherals. [CO# 1, 3, 6]; [T4, R4] Module –IX: (L – 4, T -1)
	Arduino Microcontroller Board and ARM: Introduction, Introducing the Arduino Board Installing and familiarizing the Arduino IDE, Connection diagram examples and program code. ARM Special Features and applications, Architecture, Registers, processor modes, instructions, stack organization, ARM I/O System, memory interface, pipeline organization, simple example of ARM based embedded system.[3, 4, 6]; [T5, R5-R7]
Text Books, and/or reference material	 Text Books Microprocessor, Architecture, Programming and Applications with Microprocessor 8085;Author: Ramesh S. Gaonkar (5th Edition); Publisher – Prentice Hall (Modules I) Advanced Microprocessors and Peripherals, Authors: A. K. Ray, K. M. Bhurchandi; Publisher - Tata McGraw Hill. (Modules I – VI)
	 The 8051 Microcontroller and Embedded Systems by <u>Muhammad Ali Mazidi</u>, <u>Janice G.</u> <u>Mazidi</u>, <u>Rolin D. McKinlay</u>, Pearson Education. (Modules VII) PIC Microcontrollers; Author - M. Bates; Publisher - Newnes. (Module VIII) The AVR Microcontroller and Embedded Systems Using Assembly and C: Using Arduino Uno and Atmel Studio; <i>Author - SepehrNaimi</i> and SarmadNaimi, <u>Muhammad</u> <u>Ali Mazidi; Publisher - Majidi and Naini</u>(Modules IX)
	References:
	 Microprocessors and Interfacing: Programming and Hardware; Authors: Douglas V. HallPublisher - Tata McGraw Hill The Intel Microprocessors – Architecture, Programming and Interfacing; Authors: Barry
	B. Brey; Publisher: Pearson Education

3.	The 8051 Microcontroller, Kenneth. J. Ayala, Cengage Learning, 3rd Ed.
4.	The 8051 Microcontroller: A Systems Approach; Authors: M.A. Mazidi, R.D. McKinlay,
	J.G. Mazidi; Publisher- Pearson.
5.	Embedded microcontroller and processor design; Authors: G. Osborn; Publisher:
	Pearson
6.	Arduino Cookbook; Authors: Michael Margolis, Publisher: O'Reilly Media, Inc,
7.	W.A. Smith, "ARM Microcontroller Interfacing: Hardware and Software, Eketor, 2010.

COURSE ARTICULATION MATRIX

Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome):

PO/PSO	РО	РО	РО	РО	PO	PO	РО	РО	PO	PO	PO	PO	PSO	PSO	PSO
CO	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	2	1	3	3	1	1	1	1	-	-	-	2	2	2	1
CO#2	3	2	2	1	1	1	-	1	-	-	-	1	2	1	1
CO#3	3	3	3	1	1	1	1	1	-	-	-	1	3	3	2
CO#4	1	2	3	2	1	1	-	1	-	-	-	1	3	3	2
CO#5	2	3	1	2	1	2	2	1	-	-	-	1	2	3	2
CO#6	3	2	3	2	1	-	-	-	-	-	-	1	3	3	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: No Correlation

	Departme	ent of Electronics an	d Commun	ication Engin	eering		
Course	Title of the course	Program Core	Total	Number of c	contact hours	5 = 56	Credit
Code		(PCR) / Electives	Lecture	Tutorial	Practical	Total	
		(PEL)	(L)	(T)	(P)	Hours	
ECC504	Electronic Devices	PCR	3	1	0	4	4
	and Circuits-II						
Pre-requisi	ites	Course Assessmer	nt methods:				
		((Continuous (CT),	Mid-Term	(MT), End As	sessment (EA	A))	
Electronic [Devices and Circuits I	Assignments, Mid	Semester a	nd End Seme	ester Examina	ation	
(ECC302),							
	onics (ECC01),						
	nalysis and Synthesis						
(ECC301)							
Course		course students wil					
Outcomes		nd the fundamental		of amplifiers a	and oscillator	rs.	
		esign Power Amplifie					
		amiliar with the des	-		uits.		
		esign regulated pow					
		le to make use of t		• •	electronic d	evices in so	olving the
		ay complex electron	-				
Topics	-	tages and Power An	•			(6L+2	
Covered		Output Stages; Po	•				
		ng the Class AB S	-	•			
		symmetry configur		•		•	
	Transistors–Pow	er B.J.T'S Power M	DSFETs, Pov	wer amplifier	r designing, 1	Thermal an	alysis and

	Heat sinks;
	2. Feedback Amplifiers And Oscillators (9L+2T)
	Introduction to Feedback, Basic Feedback Concepts, Ideal Close-Loop Gain, Advantages of
	negative feedback, Gain Sensitivity, Bandwidth Extension, Noise Sensitivity, Reduction of
	Non-Linear Distortion; Feedback Topologies, Series-Shunt, Shunt-Series, Series-Series,
	Shunt-Shunt Configurations, The Stability Problem, Bode Plots, One-Pole, Two-Pole and
	Three-Pole Amplifiers, Nyquist Stability Criterion, Phase and Gain Margins, Frequency
	Compensation Basic Theory, Closed Loop Frequency Response, Miller Compensation;
	Positive feedback, Condition for oscillations, phase shift, Wien bridge, Hartley, Colpitts and
	Crystal oscillators. Phase shift oscillators, Wien bridge oscillators, Tuned circuit oscillators,
	3. Differential AMPLIFIER (6L+2T)
	Differential amplifier – Common mode and Difference mode analysis – FET input stages –
	Amplifier biasing: current source and Current mirror – Gain and frequency response –
	Neutralization methods.
	4. Operational Amplifiers (7L+2T)
	Basics of operational amplifiers, open loop and closed loop response, Application of op-amps,
	viz, inverting and non inverting amplifiers, voltage follower, adder, substractor, differentiator
	and integrator, Comparators, clippers andclampers, Schmitt triggers, precision rectifiers, peak
	detectors, Log and Antilog amplifiers, gyrator, Current to voltage and voltage to current
	converters, Instrumentation and isolation amplifiers, transducer Bridge amplifiers. General
	op–amp circuit design and detailed circuit description.
	5. Signal Generator and Waveform-Shaping Circuits (6L+1T)
	Op Amp-RC Oscillator Circuits; LC and Crystal Oscillators; Generation of Square and Triangular
	Waveforms Using AstableMultivibrators; Integrated Circuit Timers;
	6. Power Supplies, Breakdown Diodes, and Voltage Regulators (6L+2T)
	Unregulated Power Supply; Basics of voltage regulators, Performance specifications; linear
	regulators, Current Limiting; Integrated Circuit Voltage Regulators, IC 78XX, 79XX, LM317, IC
	723; Voltage references - Bandgap Voltage Reference; switching regulators and monolithic
	switching regulators, DC to DC convertors.
	7. Special-purpose Devices (5L)
	Schottky barrier diodes, , MIS diode, heterojunctions devices, Tunnel Diode (with the help of
	Energy Band Diagram), Varactor Diode, UJT, SCR.
Text Books,	Text Books:
and/or	J. Millman, C.C.Halkias, "Electronic Devices and Circuits"
reference	Thomas L. Floyd, "Electronic Devices", 8th Edition, Pearson Education Inc., 2007
material	Reference Books:
	Mohammad Rashid, "Electronic Devices and Circuits" Cengage Learing, 2013
	Schilling and Belove, "Electronic Circuits: Discrete and Integrated", McGraw-Hill , 3rd Ed.
	Robert Boylestad and Louis Nashelsky, " Electronic Device and Circuit Theory", PHI; 9th
	Edition, 2007
	A.S. Sedra and K.C. Smith, "Microelectronic Circuits", 6th Edition, Oxford Univ. Press, 2006
	David A. Bell, "Electronic Devices and Circuits" 5 Ed, Oxford.

COURSE ARTICULATION MATRIX

Мар	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
СО	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	3	3	2	2	-	-	-	-	-	-	3	3	2	2
CO#2	2	2	3	2	3	-	1	-	-	-	-	2	2	3	2
CO#3	2	2	3	2	1	-	-	-	-	-	-	2	3	2	2
	•	•	•	•	•	•	•	•	•	•	•	•			

69 | Page

			Depa	artmen	t of Ele	ectroni	cs and	Comm	unicati	ion Eng	gineerii	ng			
CO#4	2	3	2	3	3	2	1	1	-	-	-	2	3	3	2
CO#5	2	3	3	3	2	1	1	1	-	-	2	1	3	3	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	Departmen	t of Electronics and (Communica	tion Engine	ering							
Course	Title of the course	Program Core	Total N	lumber of c	ontact hours	5 = 24	Credit					
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total						
		(PEL)	(L)	(T)	(P)	Hours						
ECS551	Digital	PCR	0	0	3	3	1.5					
	Communication											
	Laboratory											
Pre-requisi	tes	Course Assessmer										
		(Continuous evalu	ation (CE) a	nd end ass	essment (EA))						
-	nmunication	CE+EA										
Laboratory												
Course		e idea about analog t	-									
Outcomes		tand simultaneous t		-	-							
		ommunication techr	•									
	-	•	and mitigate interference in wired channels.									
		ommunication techr	•									
		ntiate between different coding and modulation strategies.										
Topics	List of experime											
Covered		le modulation (PCM)			ection							
		dulation (DM) - Gen										
		delta modulation (A	-	eration and	detection							
		and signal reconstru										
	5. Time divi 6. Line codi	sion multiplexing (TI))))									
		انع le shift keying (ASK) ·	Conoratio	a and doted	tion							
		ift keying (PSK) - Gen			uon							
		cy shift keying (FSK) -			tion							
Text Books		, , , ,	Generation									
and/or	•	o Analog & Digital Co	ommunicati	ons - S. Hav	/kin. M. Moh	er.						
reference		unication - J. G. Proa			,							
material	3. Lab. instructio		,									

COURSE ARTICULATION MATRIX

Mappir	ng of CO (Cours	e Out	come) to P	O (Pro	ogram	me O	utcon	ne) and	d PSO (Progra	amme Spe	ecific Outco	ome)
PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	РО	PSO	PSO	PSO
со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	2	3	2	-	-	-	-	2	1	1	1	3	2	2
CO#2	2	2	2	3	-	-	-	-	2	1	-	1	2	3	3
CO#3	3	2	2	2	3	-	-	-	1	1	-	1	2	3	2
CO#4	3	3	2	2	-	-	-	-	1	2	-	2	3	2	2
CO#5	3	3	2	2	-	-	-	-	1	1	-	1	2	3	2
CO#6	3	3	1	2	-	-	-	-	1	2	-	1	3	2	3

Correlation levels 1, 2 or 3 as defined below:1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

C a a a		Program Core	Total N	umber of c	ontact hour	s = 18						
Course	Title of the course	(PCR) / Elective	Lecture	Tutorial	Practical	Total	Credit					
Code		(PEL)	(L)	(T)	(P)	Hours						
ECS552	Microwave	PCR	0	0	3	3	1.5					
LC3552	Engineering Lab	FCN				5	1.5					
Pre	Pre-requisites Course Assessment methods (Continuous (CT), and end assessment (EA))											
	-											
	gnetic Theory and	Day to day ev		-	•	sion and	End					
	ion Lines (ECC403)			ester Exami								
Course		mpletion of this co										
Outcomes		characteristics of N vave test bench to n			-	-						
		characteristics of m		• •	avelength a							
		nplete microwave to			the characte	ristics of						
	different microwa	-		0 00000170								
List of		1. Study of the characteristics of Gunn Diode and Gunn Oscillator										
Experiment	,	 Study of the characteristics of magic-Tee and directional coupler 										
		nent of source frequ	-									
	microwave	e test bench										
		nent of input imped		unknown lo	bad.							
		crowave Power met										
		eflex-klystron chara										
		asurement of outp			meter							
		t of beam voltage v										
		t of frequency vs. R t of frequency vs. C	•	-								
Text Books		t of frequency vs. C	ναιραι ρονν	er.								
		Doghuwongchi Mi	arowaya l	abaratari	Manual N							
and/or		Raghuvangshi, Mi	crowave L	aboratory	ivianual, N	ew Age						
reference	International.											
material	[T2]Lab. Instructi											
	Reference Books		Design 14	/law Dubl								
		tenna Theory and	-	•								
		uss, Antennas for	• •									
		ordan and Keith G		Electroma	agnetic Wav	es and						
	Radiating Syster	Radiating Systems" Prentice Hall of India.										

Mapping CO	Mapping CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														e)
PO/PSO	РО	РО	РО	PO	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
СО	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	1	2	1	-	-	-	-	1	1	-	1	2	2	1
CO#2	3	2	2	-	-	-	-	-	2	1	-	1	2	1	1
CO#3	3	1	2	2	1	-	-	-	-	1	-	1	3	3	2
CO#4	3	2	1	1	-	-	-	-	1	1	-	2	3	2	1

Correlation levels 1, 2 or 3 as defined below:1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

		Department	t of Electronics and (Communica	tion Engine	ering		
			Program Core	r	-	contact hours	5 = 30	
Course	Title of th	ne course	(PCR) / Elective	Lecture	Tutorial	Practical	Total	Credit
Code			(PEL)	(L)	(T)	(P)	Hours	
	Micropro	ocessors						
ECS553	ar		PCR	0	0	3	3	1.5
200000	Microco		i on	Ũ	Ũ	5	0	1.0
	Labor	atory						
Pre-requisi	ites		Course Assessmer (Continuous (CT) a		occmont (E	^))		
					essment (E/	٦ <i>)</i>)		
Digital Cir (ECC402)	cuits and	Systems	Day to day evalua Examination	tion during	the laborat	ory session	and End S	emester
Course	At the	end of this	seasonal course, a s	tudent will	be able to:			
Outcomes	•	Recognize	e the different parts	of Micropr	ocessors, N	licrocontroll	ers and pe	ripheral
		devices.						
	•	-	methodologies t		pted for	the specifie	ed probl	ems on
		•	cessors and Microco					
	•		propriate instructio					
		logical, da external d	ata transfer and co	pying opera	ations as w	ell as data d	communic	ation to
			requirements of e	vnorimont	al satura a	f using Mi	croproces	sor and
	•	Microcon	•	sperimenta	a setup c	i using with	ciopioces	
	•		t the necessary inter	rfacing circu	uitrv to com	nmunicate M	icroproce	ssor and
			troller with the exte	-				
List of	Part A	: Programm	ning using Micropro	cessor 8085	5 Kit			
Experimen	ts 1. Perf		llowing arithmetic o	•				
	a)		and subtraction of the					
	b)		and subtraction of ty					
	c)		ation and division of		OS.			
		olay Fibonad	of factorial of a give	in number.				
	-	-	of the smallest and	largest elen	nent of an a	vrav		
			a array as follows			intay.		
	a)	Ascending						
		cending ord	-					
	6. Gen	eration of t	he following wavefor	orms				
	a)	Triangula	r.					
	b)	Square.						
		-	n stepper Motor.					
		-	ng using Microproce					
		orm the foi Addition.	llowing arithmetic o	perations of	r two 16 bit	nos.		
	a) b)	Subtraction.						
	c)	Multiplica						
	d)	Division.						
			of factorial of a give	n number.				
			of an array from on		ocation to a	another locat	tion.	
			llowing conversions	-				
	1							
	a)	Convert a	ı given decimal no. t	o hexadecir	nal.			

	5. Separation of odd and even nos.
	6. Determination of the sum of n consecutive nos. of an array.
	7. Sorting the elements of an array as follows
	a) Ascending order.
	b) Descending order.
	8. Reverse a given string and verify whether it is a palindrome or not.
	9. Interfacing with stepper Motor.
	10. Interfacing with 7 segment display.
	11. Interfacing with keyboard controller.
	Part C: Programing using Microcontroller 8051 Kit and simulator
	1. Perform the following arithmetic operations of two 16 bit nos.
	a) Addition.
	b) Subtraction.
	c) Multiplication.
	d) Division.
	2. Exchange the contents of two memory locations.
	3. Determination of the sum of first n natural nos. using 8051 Microcontroller.
	4. Check whether given number is palindrome or not.
	5. Determination of the largest and smallest no. of a data array.
	6. Sorting the data array as follows
	a) Ascending order.
	b) Descending order.
	b) Descending order.
	7. Perform the following conversions of the number system
	a) BCD to ASCII.
	b) ASCII to Decimal.
	c) Decimal to ASCII.
	8. Generation of 1 second delay continuously using on-chip timer.
	9. Interfacing with stepper motor.
	10. Generation of square waveform.
	11. Interfacing with LCD.
	Part D: Programming on ARDUINO Microcontroller Board
	1. Blink the on board LED.
	2. Generation of square waveform.
	3. Interfacing with LCD.
Taut Division	Taut De alu
Text Books,	Text Books
and/or	1. Lab. instruction manual and operation manuals supplied by the manufacturers.
reference	2. Microprocessor Architecture, Programming and Applications with the 8085;
material	Authors: R. Gaonkar; Publisher -, Prentice Hall.
	3. Advanced Microprocessors and Peripherals, Authors: A. K. Ray, K. M. Bhurchandi;
	Publisher Microprocessors and Interfacing: Programming and Hardware; Authors:
	Douglas V. HallPublisher - Tata McGraw Hill.
	4. The 8051 Microcontroller and Embedded Systems by <u>Muhammad Ali</u>
	Mazidi, Janice G. Mazidi, Rolin D. McKinlay, Pearson Education.
	5. The 8051 Microcontroller: A Systems Approach; Authors: M.A. Mazidi, R.D.
	McKinlay, J.G. Mazidi; Publisher- Pearson.

COURSE ARTICULATION MATRIX

PO/PSO PO	PSO F	PSO

СО	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	2	-	-	-	1	-	-	-	-	-	-	1	2	1	1
CO#2	3	-	3	-	2	1	-	-	1	1	-	1	2	1	1
CO#3	3	1	2	1	2	1	-	-	1	1	-	1	1	3	1
CO#4	3	1	2	1	2	1	-	-	1	1	-	1	1	3	1
CO#5	3	3	3	1	1	-	-	-	-	1	-	1	2	3	2

Correlation levels 1, 2 or 3 as defined below:

	•	t of Electronics and (
Course	Title of the course	Program Core	Total N	Number of c	contact hours	5 = 43	Credit				
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total					
		(PEL)	(L)	(T)	(P)	Hours					
HSC631	Economics and										
1150051	Management	PCR	3	0	0	3	3				
	Accounting										
Pre-requisi	ites	Course Assessmer									
		(Continuous (CT),	Mid-Term (MT) and En	d Assessmen	it (EA))					
NIL		CT+MT+EA									
Course Outcomes	 theories wh CO2:To imp the executivies CO3:To main business CO4:To imp 	ke budding engineer nich will help enginee wart knowledge on va ves of an organizatio ke potential enginee wart knowledge on b required in the area	ers to take c arious tools n rs aware of asics of acc	decision in t and technic macro econ ounting pro	he organizat ques applied nomics varial ocedure and f	tion in econon oles affect	nics by ing				
Topics	Kilowieuge	Group A: Microeconomics									
Covered	 (a) Introduction t (b) Markets and F (c) Demand and S and supply – mar (d) Understandin (e) Effects of gove Unit 2: <i>Theory of</i> (a) Utility – ord examples of utilities (b) Consumer p perfect substitutes (c) The budget of subsidies and rat (d) Optimal choi versus inferior g good (e) Price Consumer versus compensat (f) Elasticity of designment 	s: Basic Concepts (2) o study of Economic Prices: definition, ext Supply – market me ket equilibrium – she g the effects of chan ernment interventio Consumer Behaviou inal utility – cardin cy function – Margina references – assum es, perfect complime constraint – propert	s and Micro ent chanism – r ort run vers ging marke n in market r al utility – al utility – al Utility (M options abo ents – the m ies of budg and – price – income e demand o	economics market equ us long run t conditions – price con constructi U) put prefere arginal rate get set – cl e changes a effect and curve – Slut	ilibrium – ela ilibrium – ela itrol(2L) ing a utility nces – indif of substitut hange of bu and income substitution tsky decomp tes and comp	function function ference of ion (MRS) dget line changes – effect an osition – oliments	– some curves – – taxes, - normal d Giffen				

Unit 3: Theory of Production, Cost and Firms (a) Technology of production – production function (b) Properties of production function with one variable input – average product and marginal product (c) Law of Diminishing Marginal Returns (d) Iso-quants, input flexibility, diminishing rate of factor substitution (e) Iso-cost curves (f) Optimizing behaviour of the firm (g) Long-run and the short-run – returns to scale (h) Cobb-Douglas Production, CES Production Function (i) Measuring cost: Economic cost versus accounting cost, opportunity cost, sunk cost, fixed cost, variable cost (j) Long-run versus short-run costs (k) Economies of scale – short run and long run(3L) Unit 4: Analyses of Market Structures: Perfect Competition (a) Perfect Competition – assumptions – price taking behaviour (Demand curve of an individual firm) (b) Supply schedule – very short period, short period and long period (c) Equilibrium of an individual firm (d) Long run industry supply curves – constant, increasing and decreasing cost industry (e) Efficiency of competitive market – consumer and producer surplus effects of tax and subsidy, price control(3L) Unit 5: Monopoly Market (a) Average Revenue and Marginal Revenue (b) Monopolist's output decision (c) The effect of tax on monopoly output and price (d) Multiplant Monopolist (e) Price discrimination - First and Second Degree - Two part tariff - Third Degree (f) Monopoly Power – Mark-up Pricing (g) Social cost of monopoly (h) Dead-weight loss (i) Natural Monopoly(2L) Unit 6: General Equilibrium and Welfare Economics (a) Interdependence in the economy (b) 2 persons 2 goods Pure Exchange Model – Edgeworth Box Diagram (c) Contract Curve (d) Existence of Equilibrium - offer curve (e) Walras' Law (f) General Equilibrium with production – 2 good 2 factor case (g) Contract curve (h) Production Possibility Frontier (i) Pareto optimality (j) Externalities in consumption and production – market failure Group B: Macroeconomics Unit 1: Introduction to Macroeconomic Theory (2L) (a) Introduction to study of Economics and Macroeconomics for Engineers (b) Economy as a circular flow between firm sector and household sector - Firm, Household and Government (c) Basic Macroeconomic Variables - Configurations of Aggregate Output, Employment, Interest and Price Level (d) Fundamental Macroeconomic Problems – unemployment, inflation

(e) Fluctuation of output – rate of growth – high unemployment, hyper -inflation, depression and stagflation Unit 2: National Income Accounting (3L) (a) Gross National Product (GNP) (b) Gross Domestic Product (GDP) (c) Net National Product (NNP) (d) Personal Income (PI) (e) Relation between GNP, GDP, NNP and PI (f) Nominal and Real GNP (g) GNP Deflator (h) Methods of Measurement of GNP - Measuring Gross Value of GNP - Factor Share Method, Expenditure Method, Value Addition Method (i) Foreign or External Sector Unit 3: Determination of Equilibrium Level of Income(3L) (a) Aggregate Demand - Components - Consumption, Investment, Government **Expenditure and Net Exports** (b) Consumption Function – Consumption and Savings (c) Investment Function (c) Aggregate Demand (d) Equilibrium Output – Keynesian Cross Diagram (e) Multiplier (f) Stability of Equilibrium Output (g) Paradox of Thrift (h) Government Sector – Government Budget – the Balanced Budget Multiplier (i) Taxes as a function of income (j) Multiplier and changes in tax rate (k) The Goods Market - Consumption Demand - Investment Demand (I) Planned Investment and Interest Rate (m) Goods' Market Equilibrium – IS Curve Derivation Unit 4: Money, Interest and Income(4L) (g) Money: Definition and Components of Money Demand and Money Supply. (h) Money Market Equilibrium – LM Curve (i) Equilibrium in goods and money market (j) Dynamic Equilibrium Condition: Changes in Equilibrium levels of income and interest rate (I) Monetary Policy – Transmission Mechanism (m)Liquidity Trap - Interest inelasticity (n) Fiscal Policy and Crowding Out (o) Effectiveness of Fiscal and Monetary Policy in terms of IS-LM Model (p) Derivation of Aggregate Demand Function (C-M Curve) Unit 5: Inflation and Unemployment (2L) (a) Inflation – Measures, types and effects (b) Classical Theory of Inflation – Quantity Theory of Money and Inflation (c) Keynesian Theory of Inflation (d) Concept of Inflationary Gap (e) Unemployment and Inflation – Stagflation (f) Demand pull and Cost push inflation – interaction between demand pull and cost push inflation (g) Measures of controlling inflation (h) Unemployment – Natural Rate of Unemployment (i) Philips Curve and NAIRU

	(j) Short and Long Run Philips Curve
	Unit 6: Output, Price and Employment(2L)
	(a) Supply of Output – Aggregate Production Function
	(b) Aggregate Demand for and Supply of Labour
	(c) Aggregate Supply Function – Relation between Aggregate Supply and Price
	(e) Shifts in Aggregate Demand and Supply Curve
	(g) Determination of Aggregate Output, Employment, Rate of Interest and Pr ice
	(h) Comparison of Keynesian and Classical Position – Aggregate Supply and Demand in
	Classical Theory
	(i) Neutrality of Money – Classical Dichotomy – Effects of Monetary and Fiscal
	Policy in Classical Framework
	Part 2: Management Accountancy
	Unit 1: INTRODUCTION TO ACCOUNTING (2L)
	Definition of Accountancy; Accounting vs. Book Keeping, Attributes of Accounting, Objectives of Accounting; Branches of
	Accounting, Users of Accounting Statements, Generally Accepted Accounting Principles (GAAP)
	Unit 2: Preparation of Trial Balance and Final accounts(8L)
	PRIMARY BOOKSOF ACCOUNTS (JOURNAL)
	Meaning of Journal, Format of Journals, Rules of Debit and Credit, Opening Entry, Simple and Compound entries,
	Numerical Problems
	SECONDARY BOOSOF ACCOUNTS (LEDGER)
	Meaning of Ledger, Formats of Ledgers, Ledger Posting, Numerical Problems
	Cash Book
	Nature of Cash Book, Different Types of Cash Books - Single Column, Double Column and
	Triple Column, Petty Cash Book
	Concept, Preparation of Trial Balance, Numerical Problems, Advantages and Limitations of
	Trial Balance
	Concepts, Procedure for the Preparation of Trading A/c, Profit and Loss A/c and Balance Sheet and different types of adjustments.
	Unit 3: Cost volume and profit analysis (4L)
Text Books,	Text Books:
and/or	1. Pindyck, R.S. & Rubenfeld, D. L.: Microeconomics, Pearson Education, Chapters 1, 2.
reference	2.Varian, H. R.: Intermediate Microeconomics, EWP, Chapter 1.
material	3. N. G. Mankiw: Macroeconomics, Worth Publishers, Chapters 4, 6, 10
	4. W. H. Branson: Macroeconomics – Theory and Policy (2nd ed), AITBS
	5.Gupta, RL and Radhaswamy, M : Financial Accounting ; Sultan Chand and Sons
	6.Ashoke Banerjee: Financial Accounting, Excel Books
	7.Maheshwari:Introduction to Accounting,Vikas Publishing
	8.Shukla, MC, Grewal TS, and Gupta, SC : Advanced Accounts; S. Chand & Co

COURSE ARTICULATION MATRIX

PO/PSO	PO	РО	РО	PO	PO	PO	PSO	PSO	PSO						
СО	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	2	1	2	1	1	2	1	1	1	-	-	2	2	2	1
CO#2	3	2	2	1	1	2	1	1	1	-	-	1	2	1	1
CO#3	1	2	1	1	1	3	2	1	1	-	1	1	3	1	2
CO#4	2	3	2	2	1	1	1	1	1	-	1	2	2	3	2

Correlation levels 1, 2 or 3 as defined below:

		<u>SIXTH SE</u>	IVIES I ER	<u> </u>							
	Departmen	t of Electronics and									
Course _		Program Core			contact hours						
Code T	itle of the course	(PCR) / Elective	Lecture	Tutorial	Practical	Total	Credi				
		(PEL)	(L)	(T)	(P)	Hours					
ECC601 Ar	ntenna and Wave Propagation	PCR	3	0	0	3	3				
Pre-re	equisites	Course Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA))									
Electromagnet Transmission L Microwave Eng (ECC 502)	ines (ECC403),			, CT+MT+EA							
Course Outcomes	 characterizing CO2 Understat CO3 Classify va CO4 Analyze value 	e concepts of anten the antenna. nd different modes o arious antennas on t arious antennas and tenna and antenna	of radio wav he basis of I antenna ar	ve propagat their electri rays.	ion. ical performa		s for				
Topics Covered	antenna & transmireceiving antenna [T1,T2] Module II: (L – 8) Radiation from E fields, Radiation dipole; derivation Power Radiated b region, application antennas, antenn Module III: (L – 7) Antenna Parame Half-Power Beam Radiation Intensis efficiency, resolut height, transmiss Antenna noise to temperature and Module IV: (L – 6 Reflector, Slot Geometry, Patter uniform illumina Cassegrain feed complementary a types; Rectangula Horn. [CO# 3, 4, 5 Module VI: (L – 4 Microstrip Patch	eters: Radiation pat n width (HPBW) a ity, Directivity and tion, Antenna aper ion formula, Match emperature, Transn signal to noise ratio i) and Horn antenr rn Characteristics, a tion, off axis oper system. Slot a antennas, impedance ir Horn, Septum Hor i] [T1, T2]	mmunicati ism, antenr nents: Pote ectric dipol- components t and its app orem to an Folded dipol terns, bear nd First N d directive ture - phy- ning – Balun nission loss . [CO# 2, 4] nas: Parab aperture Pa ration of p ntenna, it e of slot an m, Ridge Ho ges and Lim	on link with a types an ntial function e, quarter 5, far field p olication to tennas, dir ole.[CO# 1, 4 n area, be ull Beam of gain, rad sical and e ns, Polariza a s a func [T1,T2] olic reflect attern of la obaraboloida s pattern, tennas, and orn, Corruga	transmittin d their appli ons and the wave mono pattern, radia antennas, se ectional prop 4, 5] [T1,T3] am efficience width (FNBV iation resist ffective ape tion, Polariz tion of freq tor, parabol arge circular l reflectors, Babinet's d horn anten ated Horn, Ap	g antenna cations. [4 electroma pole; Half ation resis paration o perties of V), Polari ance, rac rtures, ef ation mis uency, Ar loidal ref aperture Feed Me principle na-functio perture M	and a CO# 1] agnetic wave stance, of field dipole width- sation, diation fective match, ntenna flector, s with ethods, e and atched types-				

SIXTH SEMESTER

[analysis (CO# 2, 4, 5) [T1]
	analysis.[CO# 3, 4, 5] [T1]
	Module VII: (L – 4) Antenna Arrays: Point Sources – Definition, Patterns, arrays of two antennas – Different Cases, Principle of Pattern Multiplication, Derivation of array factor expression of Uniform Linear Array with N elements – Broadside Arrays (BSA), End fire Arrays (EFA), End fire array with Increased Directivity (EFAID), Phased Scanning Arrays, Direction of nulls and maxima, Beam-width, Comparison of BSA, EFA and EFAID characteristics. Arrays with Parasitic Elements, Yagi-Uda Array[CO# 4, 5] [T1, T2] Module VIII: (L – 7) Loop, Helical and Broadband Antennas: Introduction, Small Loop, Comparison of Far Fields of Small Loop and Short Dipole, Radiation Resistances and Directivities of Small
	Loops (Qualitative Analysis) Helical antenna: Helical Geometry, Helix Modes, Practical Design Considerations of Helical Antenna in Axial and Normal Modes, Broadband antenna, Frequency independent antenna, log periodic antennas. Antenna Measurements-Test Ranges, Measurement of Gain, Radiation pattern, Polarization, VSWR[CO# 4, 5] [T1, T2] Module XII: (L – 7)
	Radio Wave Propagation: Different Modes of Wave Propagation, Structure of atmosphere, Ground Wave Propagation (Qualitative Treatment) – Introduction, Plane Earth Reflections, Space and Surface Waves, Wave Tilt, Curved Earth Reflections. Space Wave Propagation – Introduction, Field Strength Variation with Distance and Height, Effect of Earth's Curvature, Absorption, Super Refraction, M-Curves and Duct Propagation, Scattering Phenomena, Tropospheric Propagation. Wave Propagation – Sky Wave Propagation – Introduction, Structure of Ionosphere, Refraction and Reflection of Sky Waves by Ionosphere, Ray Path, Critical Frequency, MUF, Virtual Height and Skip Distance, Relation between MUF and Skip Distance, Multi-hop Propagation[CO# 1, 2] [T3]
Text Books,	Text Books:
and/or	[T1]. Balanis, Antenna Theory and Design, Wiley Publications
reference	[T2]. John D. Krauss, Antennas for all Applications, TMH.
material	[T3]. Edward C.Jordan and Keith G.Balmain" Electromagnetic Waves and Radiating Systems" Prentice Hall of India.
	Suggested Reference Books:
	[R1]. R.E.Collin,"Antennas and Radiowave Propagation", McGraw Hill 1985.
	[R2]. Constantine.A.Balanis "Antenna Theory Analysis and Design", Wiley Student
	Edition, 2006.
	[R3]. Rajeswari Chatterjee, "Antenna Theory and Practice" Revised Second Edition New
	AgeInternational Publishers, 2006.
	[R4]. S. Drabowitch, "Modern Antennas" Second Edition, Springer Publications, 2007.
	[R5]. Robert S.Elliott "Antenna Theory and Design" Wiley Student Edition, 2006. [R6]. H.Sizun "Radio Wave Propagation for Telecommunication Applications", First
	[R6]. H.Sizun "Radio Wave Propagation for Telecommunication Applications", First Indian Reprint, Springer Publications, 2007.
COURSE ARTICULAT	
	CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)
	D PO

PO/PSO	PO	PO	РО	PO	РО	PO	РО	РО	PO	PO	PO	PO	PSO	PSO	PSO
CO	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	2	1	2	1	1	2	1	1	1	-	-	2	2	2	1
CO#2	3	2	2	1	1	2	1	1	1	-	-	1	2	1	1
CO#3	3	3	1	1	1	-	-	-	-	-	-	1	3	1	1
CO#4	1	2	1	1	1	3	2	1	1	-	1	1	3	1	2

79 | Page

_																
	CO#5	2	3	2	2	1	1	1	1	1	-	1	2	2	3	2

Correlation levels 1, 2 or 3 as defined below:

	Depart	ment of Electronics									
Course	Title of the	Program Core	Total I		ontact hours	= 42					
Code	course	(PCR) / Elective	Lecture	Tutorial	Practical	Total	Credi				
Coue	course	(PEL)	(L)	(T)	(P)	Hours					
ECC602	VLSI Design	PCR	3	0	0	3	3				
Pre-requisit	205		Course As	sessment m	ethods: (Cont	inuous As	sessmen				
rie-iequisit	.53		(CA:15%),	Mid-Term A	ssessment (N	/IA:25%) a	nd End-				
			Term Asse	essment (EA:	60%))						
Digital Circu	uits and Systems (EC	C402)	Continuo	us Assessmei	nt (CA): Quizz	es/Class					
Digital circa	· ·	-		gnments/Att							
Course		ul completion of th									
Outcomes	• CO 1:	Acquire idea abou	-	-	•						
	• CO 2:	Understand the ch									
	• CO 3:	Identify the basic s	•	-		•	ss.				
	• CO 4:	Analyze the static	•								
	• CO 5:	Design and implen			•	ential circu	iits.				
	• CO 6:	Evaluate the perfo		CMOS circuits							
Topics		verview of VLSI Des	• • •								
Covered		pective, an overvie		-	-	-					
		cepts of regularit	•	•	•						
		ing technology, CA	-	•		-					
		industry: System c		-		VLSI Syste	ems: bas				
		Sub-micron Techn	-	ne Design Iss	ues.						
		1OS Transistor Theo									
		Introduction to The metal oxide semiconductor (MOS) structure, Long-channel									
		characteristics, C-V characteristics, non-linear I-V effects, DC transfer characteristi									
		g in MOSFET, multi									
		Module III. ASIC Design Flow [L – 6] ASIC and SoC, Overview of ASIC flow, concepts of HDL coding, functional verification									
			•		-						
		nthesis, synthesis	•	•		-					
	-	nalysis, floor-planni	ng, placeme	ent and routin	ng, extraction	n, post-lay	out timi				
	verification, ex										
		MOS Process Techn	•								
		ocess flow- basic st	•	ios n-weii p	process, layou	it design	rules, sti				
		ustom mask layout	-								
		OS Inverter- Static			CN 405 1						
		inverter, inverter w	••				C 1				
		OS Inverters- Swite	-			-	-				
		initions, calculation			•	•					
		timation of interco	•				ау, вus v				
		hip (NoC), switching	-	-	ius inverters	•					
		ombinational CMO	-								
	-	uits with depletion									
		ssion gates (pass g	ates), ratioe	ea, dynamic a	and pass trai	nsistor log	circuit				
	domino circuit	s. e quential CMOS lo g	• • • •	1							

	Behavior of bi-stable elements, SR latch circuits, clocked latch and flip-flop circuits, CMOS D-latch, and edge-triggered flip-flop. Timing path, Setup time and hold time static, the example of setup and hold time static, setup and hold slack, clock skew and jitter, Clock, reset, and power distributions.
Text Books,	Text Books:
and/or	1. N. H. E. Weste and C. Harris, "Principles of CMOS VLSI Design: A System Perspective",
Reference	3rd Edition, Pearson Education 2007.
Material	2. Sung-Mo Kang, Yusuf Leblebici, Chulwoo Kim, "CMOS Digital Integrated Circuits", 4th
	edition, McGraw-Hill, 2018.
	Reference Book:
	1. Jan M. Rabaey, AnanthaChandrakasan, BorivojeNikolic, "Digital Integrated Circuits: A
	Design Perspective", 2nd Edition, Pearson Education, 2009.

COURSE ARTICULATION MATRIX

Ma	pping o	of CO (C	Course	outcon	ne) to F	PO (Pro	gramn	ne Out	come)	and PS	O (Pro	gramm	e Specific	Outcome)
PO/PSO	РО	PO	PO	РО	PO	PO	РО	PO	РО	РО	PO	РО	PSO	PSO	PSO
со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	2	1	3	3	1	1	1	1	1	1	1	2	2	2	1
CO#2	3	2	2	1	1	1	1	1	1	1	1	1	2	1	1
CO#3	3	3	3	1	1	1	1	1	1	1	1	1	3	3	2
CO#4	1	2	3	2	1	1	1	1	1	1	1	1	3	3	2
CO#5	2	3	1	2	1	2	2	1	1	1	1	1	2	3	2
CO#6	3	2	3	2	1	1	1	1	1	1	1	1	3	3	2

Correlation levels 1, 2 or 3 as defined below:1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	Donartma	nt of Electropics and	Communit	nation Engine	oring						
-		nt of Electronics and					0				
Course	Title of the course	Program Core		1	ontact hours		Credit				
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total					
		(PEL)	(L)	(T)	(P)	Hours					
ECC603	Digital Signal	PCR	3	1	0	4	4				
	Processing										
Pre-requisi	ites	Course Assessmer	nt methods								
		(Continuous (CT),	Mid-Term (MT),End Asse	essment (EA))					
Signals and	Systems (ECC303),	Class Assignments	, Mid and E	nd term exar	ninations						
Mathemat	ics-II & III	_									
(MAC02, N	1AC331)										
Course	On successful cor	npletion of this cour	se, students	s should have	e the skills an	d knowled	lge to:				
Outcomes	CO1. Represent s	signals in time and fr	equency do	omain.							
	CO2. Implement	DFT, FFT and z-trans	form.								
	CO3. Analyse a g	given signal or system using tools such as Fourier transform and z-transform									
	to know the prop	erty of a signal or sy	stem.								
	CO4. Design of p	rototype of Linear Pl	nase Filters,	FIR and IIR F	ilter Structur	e.					
	CO5. Process sign	nals to make them m	ore useful	and to desigr	n a signal pro	cessor (Di	gital filter				
	structures) for a g	given problem.									
Topics	Introduction: rea	sons behind digita	l processin	g of signals	, brief histo	rical deve	lopment				
Covered/	organization of th	ne course. (L=2)									
Syllabus	Theory of discre	te time linear syste	m sequenc	es, linear tir	ne invariant	systems,	causality				
	stability, differen	ce equations, freque	ency respon	ise, discrete	Fourier serie	s, relation	betweer				
	continuous and d	iscrete systems, Inve	erse System	s, Stability. (I	L=2, T=1)						

	in fil pl (L	npleme ter coe ane, r =4, T=1	entatio efficier elatior L)	on fron nts fro nship	n the s m the betwe	ystem singu en Fo	functi larity l ourier	ion, re ocatio trans	gion o ns, ge form	f conve ometri and Z	ergenc c evolu trans	e in the ution c form,	e Z plan of Z trar inverse	-	mining n the Z nsform.											
	Fc Di	ourier 1	transfo cimati	orm, p on in	ropert time	ies of	DFT,	circula	r conv	olutio	n, com	putatio	ons for	evaluat iscrete	ing the											
	Di Fi sy Tr Pa	gital fi Iters, d stems, ansfer ass Fun	lter st lirect f Polyp Funct ctions	ructur form I bhase r ions, f . (L=6,	es: sys and II eprese reque T=2)	struc entatio ncy sa	tures, on of f mplinរួ	cascad ilters, g struc	de and linear ture fo	parall phase or the	el com FIR filt FIR filt	imunic er stru er. Tes	ation of Ictures, t for Sta	s Filters f second Compen ability u	d order nsatory sing All											
	te fil	chniqu ters, f	ies, Ai requei	nalog ncy tra	Cheby ansfor	shev matio	LPF, D n for	esign conve	metho rting I	ods to	conve	rt ana	log filte	ss filter ers into types, a	digital											
	Di De Fl ap de	ilters for phase response compensation. (L=6, T=2) Digital Filter Structures: IIR Realizations, All Pass Realizations, FIR and IIR Lattice Synthesis, IIR Design by Bilinear Transformation, Digital to Digital Frequency Transformation. (L=6, T=2) IR filter design techniques: Windowing method for designing FIR filters, DFT method for pproximating the desired unit sample response, combining DFT and window method for lesigning FIR filter, frequency sampling method for designing FIR filter (L=6, T=2) Ion-Linear System Identification Schemes, Fractional-order digital differentiators (DDs) and ligital integrators (DIs), Fractional-order low-pass Butterworth and Chebyshev filter. (L=5,																								
	di	on-Linear System Identification Schemes, Fractional-order digital differentiators (DDs) and																								
Text Books,	Т	ext Bo	oks:																							
and/or	1)	Discre	te-Tin	ne Sigr	nal Pro	cessin	g (Sec	ond Ed	lition),	Alan V	. Oppe	enheim	, Ronal	d W. Scł	nafer,											
Reference	ar	nd Johr	n R. Bu	ck, Pe	arson	Educa	tion In	dia																		
material	-	-	-		-		•	-					Edition), John (G.											
										on Edu				_												
				•	Jnder	standi	ng Digi	ital Sig	nal Pro	ocessir	ig, Prei	ntice H	all, 1990	5.												
		BN:020 Digita			essing	by Tai	run Ku	mar Ra	awat (Jxford	Unive	rsitv Pr	ess, ISB	N:												
		780198	-		555118	, rui	annu			2.01010	2.1170	5.0911	200, 100													
		eferer			ateria	ls:																				
	-						-			de to D	igital S	Signal F	Processi	ng, Calif	ornia											
				•											Technical Publishing, 1997. ISBN: 0-9660176-3.											
		2) Digital Signal Processing using MATLAB, Vinay K. Ingle, John G. Proakis, Brooks/Cole- Thomson Learning																								
		•	•		coonig	using	IVIAIL	ч <i>в,</i> vii	Idy K. I	ngle, J	ohn G.	Proaki	IS, BIOOI	(3) COIC												
COURSE ARTICL		nomsoi	n Leari					чв, vii		ingle, J	ohn G.	Proaki	IS, BIOOI													
Mapping	JLATIC g of CO	N MA	n Leari IRIX se Out	ning come)	to PO	(Progr	amme	Outco	me) ar	nd PSO	(Progr	amme	Specific	Outcom	ne)											
Mapping PO/PSO	JLATIC g of CO PO	N MAT (Cours PO	n Learn <u>FRIX</u> se Outo PO	ning come) PO	to PO PO	(Progr PO	amme PO	Outco PO	me) ar PO	nd PSO PO	(Progr PO	amme PO	Specific PSO	Outcom PSO	ne) PSO											
Mapping PO/PSO CO	JLATIC g of CO PO #1	N MA (Cours PO #2	n Learn FRIX se Outo PO #3	ning come) PO #4	to PO PO #5	(Progr	amme	Outco	me) ar	nd PSO	(Progr	amme PO #12	Specific PSO #1	Outcom PSO #2	ne) PSO #3											
Mapping PO/PSO CO CO#1	JLATIC g of CO PO	N MA (Cours PO #2 2	n Learn TRIX se Outo PO #3 2	ning come) PO #4 2	to PO PO #5 1	(Progr PO	amme PO	Outco PO	me) ar PO	nd PSO PO	(Progr PO	amme PO #12 2	Specific PSO #1 3	Outcom PSO #2 1	ne) PSO #3 1											
Mapping PO/PSO CO CO#1 CO#2	JLATIC g of CO PO #1	N MA (Cours PO #2	n Learn <u>FRIX</u> se Outo #3 2 2	ning come) PO #4 2 2	to PO PO #5 1 2	(Progr PO	amme PO	Outco PO	me) ar PO	nd PSO PO	(Progr PO	amme PO #12	Specific PSO #1	Outcom PSO #2 1	ne) PSO #3											
Mapping PO/PSO CO CO#1	JLATIC g of CO PO #1 3	N MA (Cours PO #2 2	n Learn TRIX se Outo PO #3 2	ning come) PO #4 2	to PO PO #5 1	(Progr PO #6 -	amme PO	Outco PO	me) ar PO	nd PSO PO	(Progr PO	amme PO #12 2	Specific PSO #1 3	Outcom PSO #2 1	ne) PSO #3 1											
Mapping PO/PSO CO CO#1 CO#2	JLATIC g of CO #1 3 3	100mson <u>N MAT</u> (Course PO #2 2 3	n Learn <u>FRIX</u> se Outo #3 2 2	ning come) PO #4 2 2	to PO PO #5 1 2	(Progr PO #6 -	amme PO #7 -	Outco PO #8 -	me) ar PO	nd PSO PO	(Progr PO	amme PO #12 2 3	Specific PSO #1 3 3	Outcom PSO #2 1	ne) PSO #3 1 1											
Mapping PO/PSO CO CO#1 CO#2 CO#3	JLATIC g of CO #1 3 3 3	N MAT (Cours PO #2 2 3 3	n Learn TRIX se Outo #3 2 2 2 2	ning come) PO #4 2 2 3	to PO #5 1 2 2	(Progr PO #6 - -	amme PO #7 - -	Outco PO #8 - -	me) ar PO #9 - -	nd PSO PO	(Progr PO	amme PO #12 2 3 3	Specific PSO #1 3 3 3	Outcom PSO #2 1 1 3	ne) PSO #3 1 1 1											

Correlation levels 1, 2 or 3 as defined below:1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	Department	of Electronics and (Lommunica	ition Engine	ering		
Course		Program Core		-	ontact hours	5 = 27	
Course Code	Title of the course	(PCR) / Elective	Lecture	Tutorial	Practical	Total	Credit
Coue		(PEL)	(L)	(T)	(P)	Hours	
	Antenna and Wave						
ECS651	Propagation	PCR	0	0	3	3	1.5
	Laboratory						
Pre-requisit	tes	Course Assessmer			• • > >		
		(Continuous (CT),	and end ass	sessment (E	A))		
	netic Theory and n Lines (ECC403) and Engineering (ECC 502), Engineering Lab	Day to day evalua Examination	tion during	the laborat	tory session	and End S	Semester
Outcomes	CO#1: Understand to space medium. CO#2: Compare the CO#3: Analyze the ra parameters. CO#4: Use of VNA to CO#5: Identify the so CO#6: Design a part	radiation character adiation characteris o study antenna cha uitable antenna for	istics of diff tics of diffe tracteristics the applica	erent anter rent antenr tion differe	nna and ante nas in terms o nt communio	nna array of their ra cation syst	s diation
List of Experiment		adiation pattern of	halfwaya	dinala antar			
	 9. To plot the r 10. To study the 11. To the radia 12. To plot the r 13. Measureme 14. Study of rad equation 	adiation pattern of adiation pattern of radiation characte tion characteristics radiation pattern of nt of return loss of iation pattern of Ho the characteristics of	half wave r half wave f ristics of Ya of log peric microstrip a given ante orn antenna	nonopole a folded dipol gi-Uda ante odic dipole a patch and s enna using and under	ntenna. e antenna. enna. antenna lot antennas Network Ana stand the Fri	ilyzer is transmi	
	 9. To plot the r 10. To study the 11. To the radia 12. To plot the r 13. Measureme 14. Study of rad equation 15. To observe t 	adiation pattern of radiation characteristics radiation pattern of nt of return loss of iation pattern of Ho the characteristics of	half wave r half wave f ristics of Ya of log peric microstrip a given ante orn antenna	nonopole a folded dipol gi-Uda ante odic dipole a patch and s enna using and under	ntenna. e antenna. enna. antenna lot antennas Network Ana stand the Fri	ilyzer is transmi	
Text Books,	9. To plot the r 10. To study the 11. To the radia 12. To plot the r 13. Measureme 14. Study of rad equation 15. To observe to Reference Materials	adiation pattern of radiation characteristics radiation pattern of nt of return loss of iation pattern of Ho the characteristics of	half wave r half wave f ristics of Ya of log peric microstrip a given ante orn antenna of microstrip	nonopole a folded dipol gi-Uda ante odic dipole a patch and s enna using f a and under o antenna u	ntenna. e antenna. antenna lot antennas Network Ana stand the Fri sing EM simu	Ilyzer is transmi ulation so	
	 9. To plot the r 10. To study the 11. To the radia 12. To plot the r 13. Measureme 14. Study of rad equation 15. To observe to Reference Materials [T4]. Laboratory Ir 	adiation pattern of radiation characteristics radiation pattern of nt of return loss of iation pattern of Ho the characteristics of	half wave r half wave f ristics of Ya of log peric microstrip a given ante orn antenna of microstrip	nonopole a folded dipol gi-Uda ante odic dipole a patch and s enna using a and under o antenna u	ntenna. e antenna. enna. lot antennas Network Ana stand the Fri <u>sing EM simu</u> of the Manuf	Ilyzer is transmi ulation so facturer	ftware.
Text Books, and/or	 9. To plot the r 10. To study the 11. To the radia 12. To plot the r 13. Measureme 14. Study of rad equation 15. To observe to Reference Materials [T4]. Laboratory Ir 	adiation pattern of radiation characteristics radiation pattern of nt of return loss of iation pattern of Ho the characteristics of struction Manual a electronics-tutorial.	half wave r half wave f ristics of Ya of log peric microstrip a given ante orn antenna of microstrip	nonopole a folded dipol gi-Uda ante odic dipole a patch and s enna using a and under o antenna u	ntenna. e antenna. enna. lot antennas Network Ana stand the Fri <u>sing EM simu</u> of the Manuf	Ilyzer is transmi ulation so facturer	ftware.

COURSE ARTICULATION MATRIX

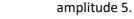
Mapping CO (Course outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome):

PO/PSO	PO	PO	PO	PSO	PSO	PSO									
CO	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	2	1	1	-	-	-	-	1	1	-	1	3	2	2
CO#2	3	2	1	1	-	-	-	-	1	1	-	1	2	1	1

CO#3	3	2	1	1	-	-	-	1	1	1	-	1	3	3	2
CO#4	3	2	2	1	1	-	-	-	1	1	1	1	3	3	2
CO#5	3	2	2	2	1	-	-	-	1	1	-	1	3	1	1
CO#6	3	3	3	1	-	-	-	-	1	1	-	1	2	3	1

Correlation levels 1, 2 or 3 as defined below:

		ent of Electronics and			-		
Course	Title of the course	Program Core	Total	Number of co	ontact hours	= 30	Credit
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total	
		(PEL)	(L)	(T)	(P)	Hours	
ECS652	VLSI Design Lab	PCR	0	0	3	3	1.5
Dro roquici	itaa		t mothodo				
Pre-requisi	lites	Course Assessmer			r = r = r = r = r		
Decia Flast		(Continuous evalu			sment (EA))		
	ronics (ECC01), Semiconductor	CE+EA					
•							
-	HC331), and						
(ECC402)	uits and Systems						
Course	CO1: Under	standing of HDL codi	ng and sim	ulation using	EDA tools		
Outcomes		e the combinational	-	0			
		e the sequential circ					
	-	and implementatio		national circu	its		
	CO5: Design	and implementatio	n of sequer	itial circuits			
Topics	List of experime	nts					
Covered		nd Implementation o	of combinat	ional circuits	using data flo	ow or gate	<u>)</u> -
	-	leling along with the			C	Ū.	
	I. E	Basic Gates (CO#2, CO	D#4)				
	II. H	Half-Adder and Full-A	dder (CO#2	2, CO#4)			
	III. H	Half-Subtractor and F	ull-Subtrac	tor (CO#2, CO	D#4)		
	IV. 2	2:4 Decoder (CO#2, C	O#4)				
	V. 8	3:3 Encoder (CO#2, C	O#4)				
	VI. F	Parity Checker (CO#2	, CO#4)				
	VII. 8	3:1 Multiplexer (CO#2	2, CO#4)				
	VIII. 1	L:4 De-multiplexer (C	O#2, CO#4)	1			
	IX. E	Binary to gray conver	ter (CO#2, (CO#4)			
		Gray to binary conver					
		2-bit magnitude com	•				
	Ũ	nd Implementation o	•		•		
		Design and simulation	•		FF, T FF, D FF	& Master-	slave FF
		using VHDL\ Verilog (
		Design and simulation			ous and Asyn	chronous)	using
		/HDL\ Verilog. (CO#1		•			
		Design and Simulatio			, SIPO, PISO &	& PIPO) us	ing
		/HDL\ Verilog. (CO#1					
		Design an Arithmetic	•	/HDL\ Verilo	g. (CO#1, CO#	#3, CO#5)	
		GDSII using QFlow ch					
	9	Specifications: Two c	ounters – o	ne clocked b	y an externa	l clock, the	e other b


	an internally generated clock. All clocks have to be identified for static timing to work correctly. Total 40 flip-flips are nowhere near the limit in terms of area for this chip size. Only four outputs and two inputs, power, and ground. The total is 8 pins. (CO#1, CO#3, CO#5)
Text Books, and/or reference material	Text Book : 1.Samir Palnitkar, "Verilog HDL," Second Edition, Pearson education 2003

COURSE ARTICULATION MATRIX

Mapping of CO (C	Course	Outco	ome) t	o PO (Progra	amme	Outco	me) a	nd PS	O (Pro	gramm	ne Spe	cific Ou	tcome)	
PO/PSO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
СО	#1	#2	#3	#4	#5	#6	#7	#8	#9	#1	#1	#1	#1	#2	#3
										0	1	2			
CO#1	2	2	2	2	1	1	1	1	1	1	1	1	2	3	2
CO#2	2	2	2	2	3	1	1	1	1	1	1	1	2	3	2
CO#3	2	2	2	2	3	1	1	1	1	1	1	1	2	3	2
CO#4	2	2	2	2	3	1	1	1	1	1	1	1	2	3	2
CO#5	2	2	2	2	3	1	1	1	1	1	1	1	2	3	2

Correlation levels 1, 2 or 3 as defined below:

	-	Departmen	t of Electronics and (Communica	tion Engine	ering				
Course	Title	e of the course	Program Core	Total N	lumber of c	ontact hours	5 = 30	Credit		
Code			(PCR) / Elective	Lecture	Tutorial	Practical	Total			
			(PEL)	(L)	(T)	(P)	Hours			
ECS653	D	igital Signal	PCR	0	0	3	3	1.5		
	Pr	ocessing Lab								
Pre-requis	ites		Course Assessmer	nt methods						
			(Continuous (CT) a	ind end ass	essment (E/	4))				
MATLAB,			Quizzes and Lab A	ssessments						
Signals & S	Systems	tems (ECC 303)								
Course		On completion of the experiments conducted, students will be able to:								
Outcomes		CO#1: Generat	te different types of	digital signa	als					
			g, reconstruction, lir				-	5		
		CO#3: Simulat	e impulse response o	of systems f	rom differe	ence equatio	ns			
			ne frequency respons							
			ut Discrete Fourier T		nd Fast Fou	rier Transfori	m			
		-	different Digital Filte							
Topics Cov	/ered		to digital signals a	nd systems:						
Syllabus		Experiment 1:								
			olot the following se	quences:						
			it sample sequence							
			it step sequence							
			it ramp sequence							
		iv. Re	al valued exponentia	l sequence	x(n) = (0	$(.8)^n u(n);0$	$\leq n \leq 50$			
		v. Sq	uare wave and Sawto	ooth wave s	sequence of	f length 50, h	aving pea	k		

Experiment 2:

- a) Generate a 50 Hz continuous time sinusoidal signal $x(t) = A\cos(2\pi ft)$ having frequency of 50 Hz and its sampled version with sampling frequency 1000 Hz. Assume the amplitude as 5.
- b) Write a program to generate a signal x(n) = u(n) u(n-10). Also plot the even and odd component of the signal.

B. Sampling, reconstruction and convolution of signals:

Experiment 3:

Consider an analog signal $x(t) = \sin(20\pi t); 0 \le t \le 1$. It is sampled at sampling time interval (T_s) as 0.01 second to obtain $x(nT_s)$. Reconstruct the analog signal from the sampled signal using *sinc* interpolation.

Experiment 4:

a) Evaluate the convolution sum for a system whose impulse response h(n) and input x(n) are same and are described as:

$$x(n) = h(n) = \left[u(n+N) - u(n-N-1)\right]$$

b) Find the linear convolution of the following signals:

$$x(n) = \{2,1,3,5,9\} \text{ and } h(n) = \{5,5,8,9,2\}$$

c) Write down a program to compute the correlation of the following sequence. $x(n) = \{1, 4, 1, 3\}$

C. Difference equation and impulse response:

Experiment 5:

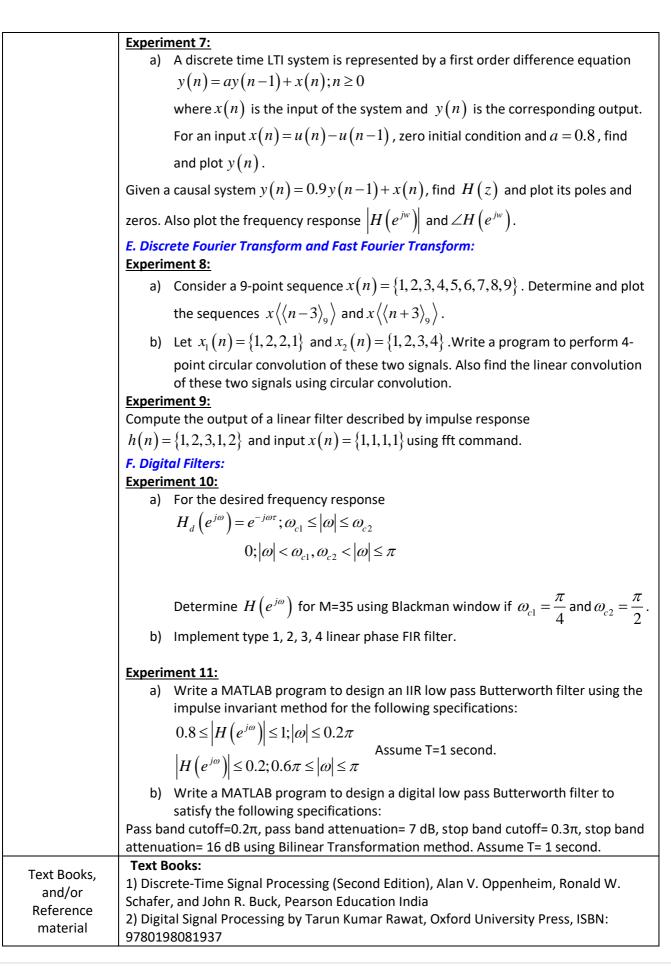
- a) Find the impulse response of the following system: y(n) -0.6y(n-1) +0.08y(n-2) = x(n)
- b) Find the step response of the system y(n)=0.7y(n-1)-0.12y(n-2)+x(n-1)+x(n-2) with the initial condition y(-1)=1,y(-2)=1.
- c) An LTI system is specified by the difference equation y(n) = 0.8y(n-1) + x(n)Determine H(e^{jw}). Also calculate and plot the steady state response for the input $x(n) = cos(0.05\pi n)u(n)$

D. Frequency domain transforms:

Experiment 6:

d) A symmetrical rectangular pulse is given by $x(n) = 1; -N \le n \le N$

0; otherwise


Determine the DTFT for N=2, 5, 10, 15. Scale the DTFT so that $X(e^{j0}) = 1$. Plot

the normalized magnitude response of the DTFT over $[-\pi,\pi]$, Study these plot

and comment on their as a function of N.

e) Determine and plot the DTFT of a sinusoidal signal

$$x(n) = \cos\left(\frac{\pi n}{4}\right); 0 \le n \le 100$$
. Also investigate the periodicity.

Reference Books/Materials: 1) Digital Signal Processing using MATLAB, Vinay K. Ingle, John G. Proakis, Brooks/Cole-Thomson Learning

COURSE ARTICULATION MATRIX

Mapping of CO) (Cou	rse Ou	tcome	e) to P	O (Pro	ogram	me Oı	utcom	e) and	PSO (I	Program	nme S	pecific (Dutcom	ie)
PO/PSO	PO	PO	PO	РО	PO	РО	PO	РО	РО	PO	PO	PO	PSO	PSO	PSO
со 🔪	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	2	2	2	-	-	-	-	-	1	-	2	3	1	1
CO#2	3	3	3	2	-	-	-	-	-	1	-	1	3	1	1
CO#3	3	3	2	3	2	-	-	-	-	1	-	1	3	3	1
CO#4	3	3	2	3	2	-	-	-	-	1	-	1	3	3	2
CO#5	3	3	3	1	1	-	-	-	1	1	-	2	3	2	1
CO#6															

Correlation levels 1, 2 or 3 as defined below:

	•	ent of Electronics and	•	cation Engine	ering							
Course	Title of the course	Program Core	Total	Number of co	ontact hours	= 42	Credit					
Code		(PCR) / Electives	Lecture	Tutorial	Practical	Total						
		(PEL)	(L)	(T)	(P)	Hours						
ECE610	Artificial	PEL	3	0	0	3	3					
	Intelligence and											
	Soft Computing											
Pre-requisi	tes	Course Assessmer	nt methods:		•							
		Continuous (CT), r	nid-term (N	1T) and End A	Assessment (I	EA)						
Introductio	on to Computing	CT+MT+EA										
(CSC01)												
& Comp	outer Programming											
Languages	like Python, C++,											
Matlab etc	•											
Course	After the compl	ion of the course the student will be able to learn the following:										
Outcomes	•CO1: Basics of	ptimization and soft computing algorithms										
		rent soft computing algorithms										
		icial neural network and its training										
		adial basis function n		-								
		nachine learning algo										
Topics		uction to Optimization		• •	• •	-						
Covered		optimization, Constr			•	-						
		sed on soft computing	-			optimiza	tion					
		ew of different soft computing algorithms part-I [L-7]										
	-	ion algorithm, Teaching learning based optimization										
			oft computing algorithms part-II [L-5]									
	•	prithm, Quantum Particle swarm optimization										
		cs of artificial neural network and its training [L-7] artificial neural network, Supervised Learning Neural Networks, Perceptrons,										
		ayer feed forward	neural net	twork, Irain	ing of neu	rai netwo	ork using					
	backpropagatio	n algorithm										

	Module V. Radial basis function neural networks and K-means clustering [L-5]
	Radial Basis Function Neural Networks (RBF), Training of RBF using pseudo inverse technique
	,Data clustering using K-means
	Module VI.Study of machine learning algorithms [L-10]
	Extreme learning machine (ELM), Training and testing of ELM, Recurrent Neural
	Network(RNN) and long short-term memory (LSTM), Training a LSTM based RNN, Deep
	learning and Convolutional Neural Network(CNN).
	Text Books:
	1.S N Sivanandam, S.N.Deepa, "Principles of Soft Computing," Wiley, 3rd edition, 2018
	2.Samir Roy &Udit Chakraborty, "Introduction to Soft Computing," Pearson,1st edition,2013
	3.Satish Kumar, "Neural Networks: A Classroom Approach", McGraw-Hill (India), 2013
Text Books,	4.Shai Shalev-Shwartz and Shai Ben-David, "Understanding Machine Learning: From Theory
and/or	to Algorithms, "Cambridge University Press",2014
Reference	Reference books:
material	1.S. Rajasekaran and G.A.V.Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms",
	PHI,2003
	2.Jang, Sun, Mizutani, "Neuro-Fuzzy and Soft computing", Pearson, 2015
	3.Simon Haykin, "Neural networks and learning machines," Pearson, 3rd edition, 2009
	4. Charu C. Aggarwal, "Neural Networks and Deep learning," Springer, 2018

COURSE ARTICULATION MATRIX

Mappin	ng of CO	(Cours	e Outo	come)	to PO	(Progra	amme	Outco	me) ar	nd PSO	(Progr	amme	Specific	Outcom	ıe)
PO/PSO	PO #1	PO #2	PO #3	PO #4	PO #5	PO #6	PO #7	PO #8	PO #9	PO #10	PO #11	PO #12	PSO #1	PSO #2	PSO #3
СО															
CO#1	3	2	2	1	1	2	1	1	1	1	1	1	2	3	2
CO#2	3	3	3	2	2	2	1	1	1	1	1	1	3	2	2
CO#3	3	3	2	2	2	1	2	1	1	1	1	1	3	3	2
CO#4	3	2	2	3	3	2	1	1	1	1	1	1	3	3	2
CO#5	3	2	2	2	2	2	1	1	1	1	1	1	3	2	2

Correlation levels 1, 2 or 3 as defined below:

	Departmen	t of Electronics and (Communica	tion Engine	ering		
Course	Title of the course	Program Core	Total N	lumber of c	ontact hours	5 = 42	Credit
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total	
		(PEL)	(L)	(T)	(P)	Hours	
ECE611	Computer	PEL	3	0	0	3	3
	Organization and						
	Architecture						
Pre-requis	ites	Course Assessmer	nt methods				
		(Continuous (CT),	Mid-Term (MT) and En	d Assessmen	it (EA))	
Digital Circ	cuits and Systems	The assessment m	ethods con	nprise of qu	izzes, multip	le choice t	type
(ECC402),		questions, and sub	ojective que	estions all ei	ther designe	d in googl	e form
Microproc	essors and	or assessed throug	gh pen and	paper.			
Microcont	rollers						
(ECC503)							

Course OutcomesAfter successful completion of the course, the student will be able to: • CO 1:Acquire idea about computer architecture and organization. • CO 2:Understand the fundamental concepts of ISA. • CO 3:Illustrate the operations of the memory unit. • CO 4:Analyzethe control and data flow of a computer. • CO 5:Design and implementation of multiprocessors. • CO 6: Evaluate the performance of a computer system.Topics CoveredModule I.Introduction and Basics [L – 4] History of computers, introduction to computer architecture, level of tran	
 CO 2:Understand the fundamental concepts of ISA. CO 3:Illustrate the operations of the memory unit. CO 4:Analyzethe control and data flow of a computer. CO 5:Design and implementation of multiprocessors. CO 6: Evaluate the performance of a computer system. Topics Module I. Introduction and Basics [L – 4] 	
 CO 3:Illustrate the operations of the memory unit. CO 4:Analyzethe control and data flow of a computer. CO 5:Design and implementation of multiprocessors. CO 6: Evaluate the performance of a computer system. Topics Module I. Introduction and Basics [L – 4]	
 CO 4:Analyzethe control and data flow of a computer. CO 5:Design and implementation of multiprocessors. CO 6: Evaluate the performance of a computer system. Topics Module I. Introduction and Basics [L – 4] 	
CO 5:Design and implementation of multiprocessors. CO 6: Evaluate the performance of a computer system. Module I. Introduction and Basics [L – 4]	
• CO 6:Evaluate the performance of a computer system.TopicsModule I.Introduction and Basics [L – 4]	
Topics Module I. Introduction and Basics [L – 4]	
Covered History of computers, introduction to computer architecture, level of tran	
	sformation,
abstract layers, their benefits of comfortably crossing them, instruction set are	chitecture I,
instruction set architecture II, instruction set architecture III, architecture	examples,
example problem, and solution ideas.	•
Module II. Fundamental Concepts and ISA [L – 6]	
Fundamental concepts in computer architecture: Von Neumann model and	d data flow
model, ISA principles and trade-off, elements of an ISA, RISC vs. CISC, MIPS	
microarchitecture level trade-off, property of ISA vs. microarchitecture.	,
Module III. Arithmetic Operations $[L-5]$	
Binary arithmetic, ALU Design, multiplier design, divider design, fas	t addition
multiplication, floating-point arithmetic.	
Module IV. Processor Design [L – 8]	
	rogrammed
microarchitecture, pipelining: issues in pipelining, data and control dependence	0
branch prediction, precise exceptions, state maintenance, state recovery; O	<u> </u>
execution and issues in OoO execution.	ut-or-order
Module V. SIMD, GPUs, VLEW and DAE [L – 5]	
SIMD processing: array and vector processors, SIMD operation in modern	ISAS, VLIVV,
Decoupled Access Execute (DAE), Systolic Array.	
Module VI. Memory Hierarchy and Caches [L - 7]	ahaalaaiaa
Memory hierarchy, physical memory and virtual memory, emerging memory te	-
main memory, memory controller, memory management, memory latency	
prefetching, Cache organization and operation, high-performance cache	s, memory
consistency, and cache coherence, in-memory processing	
Module VII. Multiprocessor [L – 7]	6
Multiprocessor types, multiprocessing, and issues in multiprocessor, limits	•
speedup, difficulty in parallel programming, heterogeneous systems, ir	•
subsystem, interfaces, I/O operations, interconnection networks: bus-base	d and NoC
based architectures.	
Text Books, Text Books:	
and/or 1. Patterson and Hennessy, "Computer Organization and Design: The	
reference Hardware/Software Interface", 4th Edition, Morgan Kaufmann/ Elsevie	r, 2009.
material 2. W. Stallings, "Computer architecture and organization: Designing for	
Performance" Pearson Education; 9th edition (1 January 2013)	
Reference Books:	
1. Andrew Tanenbaum, "Structured Computer Organization"6th Ed, Pears	
2. Patt and Patel, "Introduction to Computing Systems: From Bits and Gat	
Beyond", Morgan Kaufman, Elsevier, 2th Edition, McGraw-Hill Education	
3. Harvey Cragon, "Computer Architecture and Implementation",	Cambridge
University Press, 2000.	
4. C. Hamacher, Z. Vranesic, S. Zaky, "Computer Organization", N	IcGraw Hill
Education; 5th Edition, 2011.	

COURSE ARTICULATION MATRIX

Марр	oing of (CO (Coi	urse Ou	(tcome	to PO	(Progra	amme (Dutcom	ne) and	PSO (P	rogram	nme Sp	ecific Ou	tcome)	
PO/PSO	PO#	PO#	PO#	PO#	PO#	PO#	PO#	PO#	РО	PO#	PO#	PO#	PSO#	PSO#	PSO#
со	1	2	3	4	5	6	7	8	#9	10	11	12	1	2	3
CO#1	3	3	3	2	1	2	1	1	1	1	1	1	3	3	2
CO#2	3	2	2	2	1	2	1	1	1	1	1	1	3	2	1
CO#3	3	3	2	3	1	1	1	1	1	1	1	1	3	2	2
CO#4	3	2	3	2	1	1	1	1	1	1	1	1	3	3	2
CO#5	3	3	2	3	1	1	1	1	1	1	1	1	3	2	2
CO#6	3	2	2	2	1	2	1	1	1	1	1	1	3	2	1

Correlation levels 1, 2 or 3 as defined below:

2: Moderate (Medium) 3: Substantial (High) 1: Slight (Low)

	Departmen	t of Electronics and (Communica	tion Engine	ering		
Course	Title of the course	Program Core	Total N	lumber of c	ontact hours	= 42	Credit
Code		(PCR) / Electives	Lecture	Tutorial	Practical	Total	
		(PEL)	(L)	(T)	(P)	Hours	
ECE612	Advanced Digital	PEL	3	0	0	3	3
	Communication						
Pre-requis	lites	Continuous Assess					
		Class Assessment		em (MA) ar	nd End-Sem a	ssessmen	t (EA)
Signals and	l Systems	(CA-15) +(MA-25)	+ (EA-60)				
(ECC303),	nmunication						
(ECC401),	IIIIuiiicatioii						
	nmunication (ECC501),						
-	Theory for						
	g Application						
	any other equivalent						
subject fro	m SWAYAM,						
NPTEL,etc.							
Course		y the fundamental d					
Outcomes		ion systems and the	•		-		
		ırse. Identify buildin	g blocks tha	at constitute	e a digital coi	nmunicat	ion
	system.		- - ! - · · ·				farel
	CO2: Explain such block.	why each building t	DIOCK IS NEC	essary and t	the working	orinciple c	of each
		geometric concepts t	o understa	nd signal co	nstallations	and its va	riants
		processing tools to i		-			
		ntext to digital comm		•		presentat	
	-	e error performance			ion systems i	n the pres	sence of
	additive nois						
		te and access comm	unication sv	ystems base	ed on resourc	e availabi	lity
		power, etc.) and per					•
	CO6: Develo	p strong mathemati	cal foundat	ion and intu	uition to purs	ue any ac	lvanced
	topic in com	munications (wirele	ss commun	ication, det	ection and e	stimation	theory,
	etc.).						
Page							

Topics	1. Introduction (1 hr.)
Covered	2. Module-1 (3 hrs.)
	 Review of Autocorrelation, Cross correlation, Energy Spectral Density (ESD) and Power Spectral Density (PSD) 3. Module-2 :(3 hrs.)
	Complex baseband representation of real bandpass signals, real bandpass LTI systems
	4. Module-3 :(3 hrs.)
	Digital communication through band-limited channels
	5. Module-4 : (3 hrs.)
	Signal Space and Signal Vector : Geometrical representation of signals 6. Module-5 : (7 hrs.)
	Optimum receivers for AWGN channels: Maximum likelihood decoding of M-ary signals – Correlation receiver and Matched filter receiver, SER and BER
	7. Module-6 :(5 hrs.)
	Basics of Detection and Estimation theory
	8. Module-7 : (5 hrs.)
	Advanced modulation technique : Coherent and noncoherent modulation, MSK, M- arymodulation techniques (QPSK, QAM etc.)
	9. Module-8 : (6 hrs.)
	Spread spectrum for digital communications : Pseudo-Noise Sequence, Direct- Sequence Spread Spectrum, Frequency-Hop Spread Spectrum, Slow FHSS, Fast FHSS,
	Applications of Spread Spectrum
	10. Module-9 :(6 hrs.)
	Multichannel communications and OFDM : Principle of OFDM, Multicarrier modulation technique, FFT/IFFT and OFDM, OFDM transmitter, OFDM receiver, BER performance of OFDMsystem
Text Books,	Text Books:
and/or	1. S. Haykin, "Digital Communication Systems", Feb 2013, John Willey
reference	2. J. G. Proakis and M. Salehi "Digital Communications", 2014 (6 th edition), McGrawhill
material	3. Bernard Sklar, "Digital Communications" (2 th edition), Pearson Education
	Reference Books:
	1. NOC : "Modern Digital Communication Techniques", Prof. SuvraSekhar Das, IIT
	Kharagpur, URL : https://nptel.ac.in/courses/117/105/117105144/
	2. Richard van Nee & Ramjee Prasad "OFDM for Multimedia Communications", Artech
	House

COURSE ARTICULATION MATRIX

Mapping CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)

·~ r			ceonic	,		Brann		come	., una	1,001	Tograi		Jeenne	outcom	9	
	PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PSO	PSO	PSO
	со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
	CO#1	2	2	2	2	2	1	1	1	1	1	1	1	3	2	1
	CO#2	2	2	2	2	2	1	1	1	1	1	1	1	3	2	1
	CO#3	3	3	3	3	2	1	1	2	1	1	1	1	3	3	1
	CO#4	3	3	3	3	2	1	1	2	1	1	1	1	3	3	1
	CO#5	3	3	3	3	2	1	1	2	1	1	1	1	3	3	1
	CO#6	2	2	2	1	1	1	1	1	1	1	1	1	2	2	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

92 | Page

			partment of Electron	1		-		
Course	Title	of the	Program Core	Tota	al Number of c	contact hours =	42	Credit
Code	COL	irse	(PCR) / Elective	Lecture	Tutorial	Practical	Total	
			(PEL)	(L)	(T)	(P)	Hours	
ECE613	Object (Driented	PEL	3	0	0	3	3
	Progra	mming						
Pre-requi	sites		Course Assessment	methods				
			(Continuous (CT), N					
Introductio	on to Com	puting	The assessment m	•	•	· ·	• •	•
(CSC01)			involving real world	-		uestions all eit	her designed	in google
		1	form or assessed thr					
Course O	utcomes		plement programs us	-	•			
		-	ecify the forms of inh		-	ograms		
			alyze polymorphic be	•				
			troduce Templates an	•	•			
			sign and write progra	•	•	language		
Tanias Ca	varad	-	ply object oriented ap	oproach to de	sign software			
Topics Co	vered	Overvie Brogram	י ש-נסנ ן חming in general; Pro	ogramming na	aradiams_Proc	odural Eurotic	nal Logic a	nd Object
		0	d; Basics of Object	• • •	•	-		-
			n Compilation; Object			•		
		-	tion, Polymorphism, I					pouración)
			ng Array, Pointer and					
			g arrays and accessing	-	-	alization and as	signing value	es to array
		elemen	ts; Multidimensional	arrays; Addre	esses and Poi	nters; Void po	ointer, addre	ss-of and
		indirect	ion operator; Pointer	to pointers; D	Difference of P	ointer and Arr	ay; Pointer a	rithmetic;
		Defining	g structures					
		Revisiti	ng Functions- [2L]					
			tion, definition and					-
			ce variables; Functior	-	•		•	
			rence; Concept of rec		es of variables	s; Return from	functions by	/ value as
			by reference; Pointer			T		
			straction through Cla					anahana af
			and defining user de Constructor and Des		• • •		•	
		-	r (C++) or <i>malloc</i> and	· ·	•	•	•	
		-	f variables.	//ee (C=way), /	uns operator,	Static member	5 OF a class, I	Suurtional
			or Overloading-[4L]					
		-	or overloading techni	ques and rest	rictions: Over	loading unarv	and binary of	operators:
			ding function operato	•				•
			conversions throug	•			•	
			rs outside the class; C					
		Class Re	elationships– [4L]	-				
		The con	cept of inheritance- si	ingle and mult	iple; Construc	tor and Destru	ctor calling s	equences;
			base class; Accessibili	ty in friends a	and derived cl	asses; Virtual f	unction and	operator;
		-	C file in C++ program.					
			ed Concepts – [4L]					
			t of template- class		•	•		
		exception	on handling; Advanced	d cast operato	rs- static_cast	t, dynamic_cast	, reinterpret	_ <i>cast,</i> and
93 P a σ	0							

	const_cast; typeid operator
	Standard Library in C++- [4L]
	Standard C++ library functions for input and output handling; Standard Template Library
	Data Structures and Applications in C++ - [4L]
	Several fundamentally used data structures as array and linked list where from other data
	structures like stack, queue, tree, can be made
	Object Oriented Design and Modelling–[4L]
	Software development process from software engineering and quality perspective; Software
	architecture concepts; Best practices of software development; Phases of software
	development- inception, elaboration, construction, and transition; Object Oriented principles
	and concepts; Object Oriented modelling from views of Booch, Rumbaugh, Jacobson
	Unified Modelling Language – [4L]
	Basic building blocks of UML; Use case and actors; Structural and behavioural modelling
	aspects; Packaging and deployment; Software development process through UML.
	Laboratory Workouts – [3L]
Text Books,	Text Books:
and/or reference	1. <u>BjarneStroustrup</u> "The C++ Programming Language", Pearson Education
material	2. Debasish Jana, "C++ and Object Oriented Programming Paradigm", Prentice Hall of
	India Pvt. Ltd.
	Reference Books:
	 Bruce Eckel, "Thinking in C++", Prentice Hall
	2. S. B. Lippman, J. Lajoie, B. E. Moo, " <u>C++ Primer</u> ", Addison-Wesley Professional
	3. <u>BjarneStroustrup</u> , "Programming: Principles and Practice Using C++", Addison-Wesley
	Professional
	4. Effective C++: 50 Specific Ways to Improve Your Programs and Design by Scott
	Meyers, 1997

COURSE ARTICULATION MATRIX

Mapping of CO (Course Outcome) and PO (Programme Outcome)& PSO

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO1	PSO	PSO
СО											1			2	3
CO1	2	2	2	2	1	1	1	1	1	2	1	3	1	1	1
CO2	2	3	2	3	1	1	1	1	1	2	1	3	2	1	1
CO3	2	3	2	3	1	1	2	1	1	1	1	3	2	1	1
CO4	3	2	2	2	1	1	2	1	1	1	1	3	2	1	1
CO5	3	3	3	3	1	1	2	1	2	3	1	3	1	1	1
CO6	3	2	3	3	3	1	2	1	2	3	2	3	1	2	2

Correlation levels 1, 2 or 3 as defined below:

	Depai			nunication Eng			1
		Program	Tota	al Number of c	contact hours	= 42	
Course	Title of the	Core (PCR)/	Lecture	Tutorial	Practical	Total	Credit
Code	course	Elective				Hours	Creun
		(PEL)	(L)	(T)	(P)	Hours	
	ASIC Design						
ECE614	using	PEL	3	0	0	3	3
	Verilog/VHDL						
Pre-requisit	es		Course As	sessment met	hods: (Continu	ious Assessn	nent
			(CA:15%),	Mid-Term Ass	essment (MA:	25%) and En	ld-Term
			Assessme	nt (EA:60%))			
	1.0				((-)	
Digital Circuit	ts and Systems (ECC4	402)		is Assessment		'Class	
				nments/Atten			
Course	After successful	•			be able to:		
Outcomes		plain VLSI desig					
		nalyze and desig		•	ential digital sy	/stems.	
		nploy EDA tools					
		rite test benche		-			
		ompare betwee	-		-	nd their uses	5.
		eate a System f		-			
Topics		ef introduction	-	-	-		
Covered	Overview of Digit	-	-		CAD, the eme	rgence of HI	DLs, typic
	HDL-based design	-					
	Module-II.Hierarc	-	• -	-			
	Top-down and b					modules a	nd modu
	instances, parts of	a simulation, d	esign block, s	timulus block.			
		ic Concepts [L –	- 3]				
	Lexical conventio	ic Concepts [L – ns, data types	- 3] , system ta:	sks, compiler	directives.M	emory mod	eling Log
	Lexical conventio Synthesis: Introdu	ic Concepts [L – ns, data types ction synthesis	- 3] , system ta: of different V	sks, compiler	directives.M	emory mod	eling Log
	Lexical conventio Synthesis: Introdu Module-IV. Mo	ic Concepts [L – ns, data types ction synthesis odules and Port	- 3] , system ta: of different V s [L – 3]	sks, compiler ′erilog constru	directives.M cts.	·	eling Log
	Lexical conventio Synthesis: Introdu	ic Concepts [L – ns, data types ction synthesis odules and Port	- 3] , system ta: of different V s [L – 3]	sks, compiler ′erilog constru	directives.M cts.	·	eling Log
	Lexical conventio Synthesis: Introdu Module-IV. Mo Module definition	ic Concepts [L – ns, data types ction synthesis odules and Port	- 3] , system ta: of different V s [L – 3] on, connectin	sks, compiler ′erilog constru	directives.M cts.	·	eling Log
	Lexical conventio Synthesis: Introdu Module-IV. Mo Module definition	ic Concepts [L – ns, data types ction synthesis odules and Port , port declaratic ate-Level Mode	- 3] , system ta: of different V s [L – 3] on, connectin ling [L – 2]	sks, compiler 'erilog constru g ports, hierar	directives.M cts. chical name re	eferencing.	
	Lexical conventio Synthesis: Introdu Module-IV. Mo Module definition Module-V. Ga	ic Concepts [L – ns, data types ction synthesis odules and Port , port declaratio ate-Level Model asic Verilog gate	- 3] , system tag of different V s [L – 3] on, connectin ling [L – 2] e primitives,	sks, compiler 'erilog constru g ports, hierar description of	directives.M cts. chical name re	eferencing.	
	Lexical conventio Synthesis: Introdu Module-IV. Mo Module definition Module-V. Ga Modeling using ba fall and turn-off do Module-VI. Da	ic Concepts [L – ns, data types ction synthesis odules and Port , port declaratio ate-Level Model asic Verilog gate elays, min, max, ataflow Modelin	- 3] , system tag of different V s [L – 3] on, connectin ling [L – 2] e primitives, and typical c ng [L – 3]	sks, compiler 'erilog constru g ports, hierar description of lelays.	directives.M cts. chical name re and/or and b	eferencing. uf/not type	gates, ris
	Lexical conventio Synthesis: Introdu Module-IV. Mo Module definition Module-V. Ga Modeling using ba fall and turn-off do	ic Concepts [L – ns, data types ction synthesis odules and Port , port declaratio ate-Level Model asic Verilog gate elays, min, max, ataflow Modelin	- 3] , system tag of different V s [L – 3] on, connectin ling [L – 2] e primitives, and typical c ng [L – 3]	sks, compiler 'erilog constru g ports, hierar description of lelays.	directives.M cts. chical name re and/or and b	eferencing. uf/not type	gates, ris
	Lexical conventio Synthesis: Introdu Module-IV. Ma Module definition Module-V. Ga Modeling using ba fall and turn-off da Module-VI. Da Continuous assign	ic Concepts [L – ns, data types ction synthesis odules and Port , port declaratio ate-Level Model asic Verilog gate elays, min, max, ataflow Modelin	- 3] , system tago of different V s [L – 3] on, connectin ling [L – 2] e primitives, and typical of ng [L – 3] vecification, e	sks, compiler 'erilog constru g ports, hierar description of lelays.	directives.M cts. chical name re and/or and b	eferencing. uf/not type	gates, ris
	Lexical conventio Synthesis: Introdu Module-IV. Ma Module definition Module-V. Ga Modeling using ba fall and turn-off da Module-VI. Da Continuous assign	ic Concepts [L – ns, data types ction synthesis odules and Port , port declaratio ate-Level Model asic Verilog gate elays, min, max, ataflow Modelin ments, delay sp ehavioural Model	- 3] , system tag of different V s [L – 3] on, connectin ling [L – 2] e primitives, and typical of ng [L – 3] ecification, e deling [L – 3]	sks, compiler 'erilog constru g ports, hierar description of lelays. xpressions, op	directives.M cts. chical name re and/or and b erators, opera	eferencing. ouf/not type ands, operate	gates, ris or types.
	Lexical conventio Synthesis: Introdu Module-IV. Mo Module definition Module-V. Ga Modeling using ba fall and turn-off do Module-VI. Da Continuous assign Module-VII. B	ic Concepts [L – ns, data types ction synthesis odules and Port , port declaratio ate-Level Model asic Verilog gate elays, min, max, ataflow Modelin ments, delay sp ehavioural Moo dures, initial an	- 3] , system tag of different V s [L – 3] on, connectin ling [L – 2] e primitives, and typical of ng [L – 3] decification, e deling [L – 3] d always, blo	sks, compiler 'erilog constru g ports, hierar description of delays. xpressions, op ocking and no	directives.M cts. chical name ra and/or and b erators, opera nblocking stat	eferencing. uf/not type ands, operation	gates, ris or types. lay contro
	Lexical conventio Synthesis: Introdu Module-IV. Mo Module definition Module-V. Ga Modeling using ba fall and turn-off da Module-VI. Da Continuous assign Module-VII. B Structured proced	ic Concepts [L – ns, data types ction synthesis odules and Port , port declaratio ate-Level Model asic Verilog gate elays, min, max, ataflow Modelin ments, delay sp ehavioural Mod lures, initial an ement, event o	- 3] , system tag of different V s [L – 3] on, connectin ling [L – 2] e primitives, and typical of ng [L – 3] decification, e deling [L – 3] d always, blo	sks, compiler 'erilog constru g ports, hierar description of delays. xpressions, op ocking and no	directives.M cts. chical name ra and/or and b erators, opera nblocking stat	eferencing. uf/not type ands, operation	gates, ris or types. lay contro
	Lexical convention Synthesis: Introduce Module-IV. Ma Module definition Module-V. Ga Modeling using ba fall and turn-off da Module-VI. Da Continuous assign Module-VII. B Structured procease generate a state	ic Concepts [L – ns, data types ction synthesis odules and Port , port declaratio ate-Level Model asic Verilog gate elays, min, max, ataflow Modelin ments, delay sp ehavioural Mod lures, initial an ement, event o rallel blocks	- 3] , system tag of different V s [L – 3] on, connectin ling [L – 2] e primitives, and typical of ng [L – 3] decification, e deling [L – 3] d always, bloc control, cond	sks, compiler 'erilog constru g ports, hierar description of delays. xpressions, op ocking and no	directives.M cts. chical name ra and/or and b erators, opera nblocking stat	eferencing. uf/not type ands, operation	gates, ris or types. lay contro
	Lexical conventio Synthesis: Introdu Module-IV. Ma Module definition Module-V. Ga Modeling using ba fall and turn-off da Module-VI. Da Continuous assign Module-VII. B Structured proceed generate a state sequential and pa	ic Concepts [L – ns, data types ction synthesis odules and Port , port declaratio ate-Level Model asic Verilog gate elays, min, max, ataflow Modelin ments, delay sp ehavioural Moo dures, initial an ement, event o rallel blocks sks and Function	- 3] , system tag of different V s $[L - 3]$ on, connectin ling $[L - 2]$ e primitives, and typical of ng $[L - 3]$ decification, e deling $[L - 3]$ d always, bloc control, control ns $[L - 4]$	sks, compiler 'erilog constru g ports, hierar description of delays. xpressions, op ocking and no ditional state	directives.M cts. chical name ra and/or and b erators, opera nblocking stat ments, multiv	eferencing. ouf/not type ands, operate ements, del way branch	gates, ris or types. lay contro ing, loop
	Lexical convention Synthesis: Introduce Module-IV. Ma Module definition Module-V. Ga Modeling using ba fall and turn-off da Module-VI. Da Continuous assign Module-VII. B Structured proceed generate a state sequential and pa Module-VIII. Tas Differences betwee	ic Concepts [L – ns, data types ction synthesis odules and Port , port declaratio ate-Level Model asic Verilog gate elays, min, max, ataflow Modelin ments, delay sp ehavioural Moo dures, initial an ement, event o rallel blocks sks and Function	- 3] , system tago of different V s $[L - 3]$ on, connectin ling $[L - 2]$ e primitives, and typical of ng $[L - 3]$ decification, e deling $[L - 3]$ d always, blo control, cont ns $[L - 4]$ nctions, decla	sks, compiler 'erilog constru g ports, hierar description of lelays. xpressions, op ocking and no ditional states aration, invoca	directives.M cts. chical name ra and/or and b erators, opera nblocking stat ments, multiv	eferencing. ouf/not type ands, operate ements, del way branch	gates, ris or types. lay contro ing, loop
	Lexical convention Synthesis: Introduce Module-IV. Ma Module definition Module-V. Ga Modeling using ba fall and turn-off da Module-VI. Da Continuous assign Module-VII. B Structured proceed generate a state sequential and pa Module-VIII. Tas Differences betwee	ic Concepts [L – ns, data types ction synthesis odules and Port , port declaratio ate-Level Model asic Verilog gate elays, min, max, ataflow Modelin ments, delay sp ehavioural Mod dures, initial an ment, event o rallel blocks sks and Function en tasks and fun	- 3] , system tago of different V s $[L - 3]$ on, connectin ling $[L - 2]$ e primitives, and typical of ng $[L - 3]$ decification, e deling $[L - 3]$ d always, bloc control, control, ns $[L - 4]$ nctions, declar rechniques [L	sks, compiler 'erilog constru g ports, hierar description of delays. xpressions, op ocking and no ditional state aration, invoca . – 4]	directives.Ma cts. chical name ra and/or and b erators, opera nblocking stat ments, multiv tion, automat	eferencing. ouf/not type ands, operate ements, del way branch ic tasks, and	gates, ris or types. lay contro ing, loop
	Lexical convention Synthesis: Introduce Module-IV. Mod Module definition Module-V. Ga Modeling using ba fall and turn-off do Module-VI. Da Continuous assign Module-VII. B Structured proceed generate a state sequential and pa Module-VIII. Tas Differences betwee Module-IX. Us	ic Concepts [L – ns, data types ction synthesis odules and Port , port declaration ate-Level Model asic Verilog gate elays, min, max, ataflow Modelin ments, delay sp ehavioural Moo dures, initial an ement, event of rallel blocks sks and Function en tasks and fun eful Modeling T nuous assignment	- 3] , system tago of different V s $[L - 3]$ on, connectin ling $[L - 2]$ e primitives, and typical of ng $[L - 3]$ decification, e deling $[L - 3]$ d always, bloc control, control, ns $[L - 4]$ nctions, declar rechniques [L	sks, compiler 'erilog constru g ports, hierar description of delays. xpressions, op ocking and no ditional state aration, invoca . – 4]	directives.Ma cts. chical name ra and/or and b erators, opera nblocking stat ments, multiv tion, automat	eferencing. ouf/not type ands, operate ements, del way branch ic tasks, and	gates, ris or types. lay contro ing, loop
	Lexical convention Synthesis: Introduce Module-IV. Mod Module definition Module-V. Ga Modeling using ba fall and turn-off da Module-VI. Da Continuous assign Module-VII. B Structured proceed generate a state sequential and pa Module-VIII. Tas Differences betwee Module-IX. Us Procedural conti execution, useful s	ic Concepts [L – ns, data types ction synthesis odules and Port , port declaration ate-Level Model asic Verilog gate elays, min, max, ataflow Modelin ments, delay sp ehavioural Moo dures, initial an ement, event of rallel blocks sks and Function en tasks and fun eful Modeling T nuous assignment	- 3] , system tag of different V s $[L - 3]$ on, connectin ling $[L - 2]$ e primitives, and typical of ng $[L - 3]$ decification, e deling $[L - 3]$ d always, bloc control, cond ns $[L - 4]$ nctions, declar rechniques $[L$ hents, overrise	sks, compiler 'erilog constru g ports, hierar description of lelays. xpressions, op ocking and no ditional state aration, invoca . – 4] iding parame	directives.Ma cts. chical name ra and/or and b erators, opera nblocking stat ments, multiv tion, automat	eferencing. ouf/not type ands, operate ements, del way branch ic tasks, and	gates, ris or types. lay contro ing, loop
	Lexical convention Synthesis: Introduce Module-IV. Mod Module definition Module-V. Ga Modeling using ba fall and turn-off do Module-VI. Da Continuous assign Module-VII. B Structured procector generate a state sequential and pa Module-VIII. Tas Differences betwee Module-IX. Us Procedural contine execution, useful se Module-X. Fli	ic Concepts [L – ns, data types ction synthesis odules and Port , port declaratio ate-Level Model asic Verilog gate elays, min, max, ataflow Modelin ments, delay sp ehavioural Model arallel blocks sks and Function en tasks and function en tasks and function system tasks. p-Flop and Cou	- 3] , system tago of different V s $[L - 3]$ on, connectin ling $[L - 2]$ e primitives, and typical of ng $[L - 3]$ decification, e deling $[L - 3]$ d always, bloc control, cond ns $[L - 4]$ nctions, declar rechniques $[L$ nents, overri- nter Design [sks, compiler 'erilog constru g ports, hierar description of lelays. xpressions, op ocking and no ditional states aration, invoca . – 4] iding parame L – 4]	directives.Ma cts. chical name ra and/or and b erators, opera nblocking stat ments, multiv tion, automat ters, conditio	eferencing. ouf/not type ands, operate ements, del way branch ic tasks, and onal compi	gates, ris or types. lay contro ing, loop l function lation ar
	Lexical convention Synthesis: Introduce Module-IV. Ma Module definition Module-V. Ga Modeling using ba fall and turn-off da Module-VI. Da Continuous assign Module-VII. B Structured proceed generate a state sequential and pa Module-VIII. Tas Differences betwee Module-IX. Us Procedural contine execution, useful se Module-X. Fli Synchronous and se	ic Concepts [L – ns, data types ction synthesis odules and Port , port declaratio ate-Level Model asic Verilog gate elays, min, max, ataflow Modelin ments, delay sp ehavioural Mod dures, initial an ment, event of rallel blocks sks and Function en tasks and fun eful Modeling T nuous assignm system tasks. p-Flop and Cou asynchronous fl	- 3] , system tag of different V s [L – 3] on, connectin ling [L – 2] e primitives, and typical of ng [L – 3] decification, e deling [L – 3] d always, bloc control, cond ns [L – 4] nctions, decla echniques [L nents, overri- nter Design [ip flop design	sks, compiler 'erilog constru g ports, hierar description of delays. xpressions, op ocking and no ditional states aration, invoca - 4] iding parame L - 4] n with set and	directives.Ma cts. chical name ra and/or and b erators, opera nblocking stat ments, multiv tion, automat ters, conditio	eferencing. ouf/not type ands, operate ements, del way branch ic tasks, and onal compi	gates, ris or types. lay contro ing, loop l functions lation ar
	Lexical convention Synthesis: Introduce Module-IV. Mod Module definition Module-V. Ga Modeling using ba fall and turn-off da Module-VI. Da Continuous assign Module-VII. B Structured proceed generate a state sequential and pa Module-VIII. Tas Differences betwee Module-IX. Us Procedural conti execution, useful s Module-X. Fli Synchronous and a Module-XI. FS	ic Concepts [L – ns, data types ction synthesis odules and Port port declaration ate-Level Model asic Verilog gate elays, min, max, ataflow Modelin ments, delay sp ehavioural Model dures, initial an ment, event of rallel blocks sks and Function en tasks and func- tion asynchronous fl SM & Processor	- 3] , system tag of different V s $[L - 3]$ on, connectin ling $[L - 2]$ e primitives, and typical of ng $[L - 3]$ decification, e deling $[L - 3]$ d always, bloc control, cond ns $[L - 4]$ nctions, decla rechniques $[L$ nents, overri- nter Design $[L - 6]$	sks, compiler 'erilog constru g ports, hierar description of delays. xpressions, op ocking and no ditional states aration, invoca a a 4] iding parame L 4] n with set and 5]	directives. Ma cts. chical name ra and/or and b erators, opera nblocking stat ments, multiv tion, automat ters, conditio reset, design o	eferencing. ouf/not type ands, operate ements, del way branch ic tasks, and onal compi of basic coun	gates, ris or types. lay contro ing, loop l function lation ar iters.
	Lexical convention Synthesis: Introduce Module-IV. Ma Module definition Module-V. Ga Modeling using ba fall and turn-off da Module-VI. Da Continuous assign Module-VII. B Structured proceed generate a state sequential and pa Module-VIII. Tas Differences betwee Module-IX. Us Procedural contine execution, useful se Module-X. Fli Synchronous and se	ic Concepts [L – ns, data types ction synthesis odules and Port port declaration ate-Level Model asic Verilog gate elays, min, max, ataflow Modelin ments, delay sp ehavioural Model fures, initial an entallel blocks sks and Function en tasks and function en tasks and function system tasks. p-Flop and Cou asynchronous fl SM & Processor ata path and Cou	- 3] , system tago of different V s $[L - 3]$ on, connectin ling $[L - 2]$ e primitives, and typical of ng $[L - 3]$ decification, e deling $[L - 3]$ d always, bloc control, cond ns $[L - 4]$ nctions, declar rechniques $[L$ nents, overri- nter Design $[L - 6]$ ontroller design	sks, compiler 'erilog constru g ports, hierar description of delays. xpressions, op ocking and no ditional states aration, invoca . – 4] iding parame L – 4] n with set and 5] gn, Modeling	directives.Ma cts. chical name ra and/or and b erators, opera nblocking stat ments, multiv tion, automat ters, conditio reset, design o Memory, Pipe	eferencing. buf/not type ands, operate ements, del way branch ic tasks, and onal compi of basic coun elining, and	gates, ris or types. lay contro ing, loop l function lation ar oters.

	Overview of basic SystemVerilog, UVM verification environment: introduction to UVM methodology and universal Verification Components (UVC) structure, stimulus modeling, creating a simple environment, DUT, TLM, functional coverage modeling, register modeling in UVM.
Text Books,	Text Books:
and/or Reference	1. Samir Palnitkar, "Verilog HDL, A Guide to Digital Design and Synthesis", Second Edition, Pearson Education, 2004
Material	2. J. Bhaskar, "Verilog HDL Synthesis", BS publications, 2001.
	Reference Books/Materials:
	1. S. Brown and Z. Vranesic, Fundamentals of Digital Logic with Verilog Design, McGraw Hill, Third Edition 2013.
	2. G. De Micheli. Synthesis and optimization of digital circuits, McGraw Hill, 2003
	3. IndranilSengupta, IIT Kharagpur, "NPTEL Course on Hardware Modeling using Verilog" (2017) <u>https://www.youtube.com/watch?v=NCrlyaXMAn8&list=PLRsFfXmDi9IYCNlvNjrsD8bLMmNE</u> <u>OUxBH</u>

COURSE ARTICULATION MATRIX

Mappi	ng of C	O (Cou	rse Ou	tcome) to PO	(Prog	ramme	Outco	me) ai	nd PSO	(Prog	amme	Specific	Outcom	ne)
PO/PSO	PO	РО	PO	РО	РО	РО	РО	РО	РО	РО	РО	PO	PSO	PSO	PSO
со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	1	3	2	1	1	1	1	1	1	1	1	1	2	3	1
CO#2	3	2	1	1	1	1	1	1	1	1	1	1	3	2	1
CO#3	3	2	1	1	1	1	1	1	1	1	1	1	3	2	1
CO#4	3	2	1	1	1	1	1	1	1	1	1	1	3	2	1
CO#5	1	1	3	2	1	1	1	1	1	1	1	1	2	3	1
CO#6	3	2	1	1	1	1	1	1	1	1	1	1	3	2	1

Correlation levels 1, 2 or 3 as defined below:

	Don	artmost of Electronics and Comm	unication E	nginooring								
		artment of Electronics and Comm										
Course	Title of the course	Program Core (PCR) / Elective	l otal N	lumber of c	ontact hours	s = 42	Credit					
Code		(PEL)	Lecture	Tutorial	Practical	Total						
			(L) (T) (P) Hours									
ECE615	Active Filter	PEL	3	0	0	3	3					
	Design											
Pre-requ	isites	Course Assessment methods										
(Continuous (CT), Mid-Term (MT),End Assessment (EA))												
Electroni	c Devices and	Class Assignments, Mid and End	d term exar	minations								
Circuits I	(ECC302),											
Signal an	d Systems (ECC303)											
Course C	Outcomes	After the completion of the co	urse, the st	udent will	be able to:							
		CO1: Explain the operation of	of various H	ligh perforr	mance filters	5.						
		CO2: Design Analog Circuits										
		• CO3: Create the Layout of fil	ters.									
	 CO4: Analyze the performance of different active filters. 											
		• CO5: Interpret the use of An	alog filter									
	CO6: Compare the architectures based on Area/Power/Speed.											

Topics Covered/	Module-I:[L-5]
Syllabus	Introduction, Butterworth approximation, Chebyshev approximation, Inverse Chebyshev approximation, Synthesis of doubly terminated all-pole LC ladders filters, Synthesis of doubly terminated LC ladders with finite zeros of transmission. Module-II:
	Network sensitivity - low sensitivity of doubly terminated ladders, Introduction to frequency transformations, Properties of the driving impedance of lossless LC networks, Tellegen's theorem and positive real functions, Low Pass-to-Low Pass, Low Pass-to-Band Pass, Low Pass-to-High Pass and Low Pass-to-Band Stop transformations, Richard's Transformation, RC-CR transformation, Emulation of an inductor with a capacitor and controlled sources, the gyrator, a second order transconductor capacitor filter. [L-8]
	Module-III: Cascade of biquads realization of high order low pass filters, equivalence of the parallel RLC and series RLC circuits. Dynamic Range in active filters - impedance scaling and its effect on dynamic range, Introduction to noise in electrical networks, node scaling, Dynamic range scaling in active filters. [L-7]
	Module-IV:Biquad Ordering, Active Ladder Emulation / Leapfrog Filters, Effect ofTransconductor non idelaities (parasitic capacitance/output resistance), parasiticpoles, Effect of Finite Gain of the Transconductor.[L-5]Module-V:
	Single-ended Versus Differential Filters, Introducing the Differential-pair Based Fully Differential Transconductor, the Need for Common-mode Feedback, Stability of the Common-mode Feedback Loop, Common-mode Positive Feedback in Gyrators, Noise in the Differential Pair, Linearity of the Differential Pair, Cascoding, Noise in Cascodes, Layout Considerations and Multi-finger Transistors. Linearizing the Differential Pair, Resistive Degeneration. [L-7] Module-VI:
	Noise in Degenerated Transconductors, The Folded Cascode and Noise Analysis, Stabilizing filter bandwidth over process and temperature - the resistor servo loop, master-slave loops, Turning the filter into a VCO to estimate center frequency, example of a practical precision fixed-gm bias circuit, Introduction to accurate measurement and characterization techniques for active filters, Introduction to Active-RC filters, the use of an OTA instead of an opamp, swing and noise considerations, single stage OTAs, Multistage OTAs for use in CMOS Active-RC filters, The Miller compensated opamp in active-RC filters, noise considerations, noise in active-RC filters, Distortion and Intermodulation in filters, fixed gm-bias circuits [L-10]
Text Books, and/or Reference material	Text Book: 1. R Schaumann and M E Van Valkenburg, "Design of analog filters", First Edition, Oxford University Press, 2005.
	 Reference Books: 1. G Daryanani, "Principles of active network synthesis and design", New York, Wiley, 1976. 2. M Van Valkenburg, "Analog filter design", New York, Holt Rinehart and Winston, 1982.
	 Franco S., "Design with operational amplifiers and analog integrated circuits", 3rd ed. New York, McGraw-Hill, 2002. Allan Waters, "Active filter design", New York, McGraw-Hill, 1991. Passive and Active Filters (Theory and Implementations) By: Wai-Kai Chen

COURSE ARTICULATION MATRIX

Mappi	Mapping of Course Outcome (CO) to Programme Outcome (PO) and Programme Specific Outcome (PSO)														
PO/PSO	PO	РО	РО	РО	PSO	PSO	PSO								
со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	2	1	3	3	1	1	1	1	1	1	1	2	2	2	1
CO#2	3	2	2	1	1	1	1	1	1	1	1	1	2	1	1
CO#3	3	3	3	1	1	1	1	1	1	1	1	1	3	3	2
CO#4	1	2	3	2	1	1	1	1	1	1	1	1	3	3	2
CO#5	2	3	1	2	1	2	2	1	1	1	1	1	2	3	2
CO#6	3	2	3	2	1	1	1	1	1	1	1	1	3	3	2

Correlation levels 1, 2 or 3 as defined below:

- 0 - (· · ·	epartment of Electron		unication Engir	eering		
	D						
Course Code	Title of the course	Program Core (PCR) / Elective	Tota	l Number of co	ntact hours = 42	2	Credit
		(PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	
ECE616	VLSI Technology	PEL	3	0	0	3	3
Pre-requis	ites	Course Assessment (Continuous (CT), n		and end assess	ment (EA))		
	onics (ECC01), emiconductor IC331)	CT+MT+EA					
Course Outcomes Topics Covered	devices CO#2: Identify CO#3: Illustrate CO#4: Build the Module1: Intr	basic knowledge of se the process flow of d e the each process me e knowledge of integr roduction[3L] nitions,Scalinglaws,Id	evice fabrication ethod of VLSI rated process	on. technology technology			Si
	oxidationondif Module3: Lith Processflowof Contact,Proxir Mask,Nextgen Module4: Diff	cessofOxidation,Type ferentparameters,Ap ography [6L] lithography,Compone nity,Projection,Metri erationlithography. usion and Ion Implar	oplicationsinIC entsofLithogra csofLithograph ntation [7L]	technology,LO(phy,Aligner; ny,Photoresist-	COS.		
	inDiffusion,Pro IonImplantatio	, Diffusionin Si, Poly Si, I oblems in Thermal Diffu on system, Mechanism n Implantation damag	usion,Advanta ,Implantation	gesofionImplar Profile,Junctior	Depth, Dose	eandConce	ndDrive- entration
98 P a g e	2						

Module5: ThinFilmDeposition[6L]Requirementsofdeposition, Methods: PhysicalVaporDepositionandChemicalVapordeposition, StepCoverageandFillingIssues.Module6Etching:[3L]Etchprocess, Requirements, Figureofmerits, TypesofEtch, DryandPlasmaEtch, IonenhancedEtch.Module7: Metallization and Interconnect[6L]Interconnect, Interconnectrequirements, PossibleInterconnectmaterials, AImetallization, Alspikeproblem, HillocksandVoids, ElectromigrationProblems, Methodstoreducetheproblems, Metalsilicides, MultilevelMetallization, Wplugsforcontactandvias, IntermetalDilectrics.Module8: ICprocessIntegration[6L]
SimpleResistor,Capacitor,NMOS.
1.VLSITechnology: SMSze 2.SiliconProcessTechnology: SKGandhi
3.SiliconVLSITechnology:Plummer,DealandGriffin 4.FundamentalofSemiconductorFabrication:SzeandMay

COURSE ARTICULATION MATRIX

Mapping CO (Course outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)

PO/PSO	PO#	PO	PO	PO	PSO	PSO#	PSO#								
C0	1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	2	3
CO#1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CO#2	1	2	1	1	1	1	1	1	1	2	1	1	2	2	1
CO#3	2	3	2	2	3	1	2	1	1	2	1	2	3	3	2
CO#4	3	1	3	3	2	1	1	1	2	2	2	3	3	3	3

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	Department of Electronics and Communication Engineering												
Course	Title of the	Program	Tota	l Number of	contact hour	s = 42	Credit						
Code	course	Core	Lecture	Tutorial	Practical	Total							
		(PCR) /	(L)	(T)	(P)	Hours							
		Elective											
		(PEL)											
ECE617	Probability and	PEL	3	0	0	3	3						
	Random Signal												
	Theory												
Pre-requisit	es	Course Ass	essment m	ethods			I						
		(Continuou	us (CT), Mid	-Term (MT),	End Assessme	ent (EA))							
NIL		CT+MT+EA	l l										
Course	• CO1: Cł	naracterize p	robability n	nodels and fu	inction of ran	dom variable	es.						
Outcomes	• CO2: E	valuate and	apply mo	ments, ACF,	PSD & cha	racteristic for	unctions and						
	understand the concept of inequalities and probabilistic limits.												
	CO3: Recognize, interpret and apply a variety of deterministic and												
	nondeterministic random processes that occur in engineering.												

1	
Topics	1. Introduction: Basic of Probability theory, Bernoulli's Trials (5L)
Covered	2. Random Variables: types, examples, PDF, PMF, Conditional probability density
	function, (10L).
	3. Function of one random variable. (4L)
	4. Mean, Variance, Moments, Characteristics functions of random variables (5L)
	5. Two random variables, Joint density and distribution function, one function of two
	random variables, Two functions of two random variables (8L)
	6. Random processes: definitions and notations, Autocorrelation function, Cross
	correlation function, Covariance, PSD, Markov Processes, Gaussian Process, Poisson
	Process, Systems and random signals (10L)
Text Books,	Text Books:
and/or	1. A. Popoulis, U. Pillai, Probability, random variables and stochastic processes, Tata
reference	McGraw-Hill Inc., 4 th Ed., New Delhi, 2017
material	2. K. Sam Shanmugam, Digital and analog communication systems, Wiley, India, 2011.
	3. P. Peebles, Probability, random variables and random signal priniciples, McGraw-Hill
	Inc., 4 th Ed., New York, USA, 2001
	4. C. W. Therrien, M. Tummala, Probabilty and random processes for electrical and
	computer engineers, 2 nd Ed., CRC press, printed in India, 2012
	Reference Books:
	1. George R. Cooper, C. D. McGillem, Probabilistic methods of signal analysis and
	system analysis, Oxford University Press, 3rd Ed., New Delhi, 2007
	2. Alberto Leon-Garcia, Probability and random processes for electrical engineering,
	Pearson Education Inc., 2 nd Ed., 2007

COURSE ARTICULATION MATRIX

Mappin	Mapping the Course Outcome (CO) to Programme Outcome (PO) and Programme Specific Outcome (PSO)														
PO/PSO	PO#	PO#	PO#	PO#	PO#	PO#	PO#	PO#	PO#	PO	РО	PO	PSO	PSO#	PSO
со	1	2	3	4	5	6	7	8	9	#10	#11	#12	#1	2	#3
CO#1	3	3	2	2	1	1	1	-	1	1	2	3	3	1	2
CO#2	3	2	2	2	2	-	-	-	-	1	1	1	3	2	2
CO#3	3	2	2	3	2	-	-	-	-	-	-	1	3	2	1

Correlation levels 1, 2 or 3 as defined below:1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	Department of Electronics and Communication Engineering												
Course	Title of the course	Program Core	Total N	Number of c	ontact hours	5 = 44	Credit						
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total							
		(PEL)	(L)	(T)	(P)	Hours							
ECE618	Data	PEL	3	0	0	3	З						
	Communication												
	and Computer												
	Networks												
Pre-requisi	tes	Course Assessmer	nt methods										
		(Continuous (CT), mid-term (MT) and End Assessment (EA))											
Analog Com	nmunication	The assessment methods comprise of quizzes, multiple choice type											
(ECC401),		questions involving real world examples, and subjective questions all											
Digital Com	munication	either designed in google form or assessed through pen and paper.											
(ECC501)													
Course	CO1: Understand	the rudiments of ho	ow compute	ers commur	nicate								
Outcomes	CO2: Acquaintan	ce with the architect	ure of a nu	mber of dif	ferent netwo	orks							
	CO3: Understand	the principles of pro	otocol layer	ing									
	CO4: Understand	the basic aspects of	⁻ packet bas	ed protoco	l design and	implemen	tation						

	CO5: Analyze and Explain the information flow in network traffic
	CO6: Interpret the importance of interconnection networks
Topics Covered	Course Introduction and Physical Layer – [4L] Data communication; Networks; Protocols and standards; Layered tasks; OSI Model; TCP/IP protocol suite; Addressing; Physical layer and media; Data and Signals; Analog and Digital; Transmission impairment; Line coding; Block coding; Sampling; Modulation of digital data; Telephone modems; Modulation of Analog signals; FDM,WDM,TDM, Guided media; Unguided media; Circuit switching; Telephone networks; DSL technology; Cable modem; SONET.
	Data Link Layer, Framing, and Error Handling– [8L]
	Types of errors; Error detection; Error correction; Flow and error control; Stop and wait ARQ, go back N ARQ, Selective Repeat ARQ; HDLC; Point to Point protocol; random access; Controlled access; Traditional Ethernet; Fast Ethernet; Gigabit Ethernet; IEEE802.11; Bluetooth; Backbone network; Virtual LAN; Cellular Telephony; Satellite Networks; Virtual Circuit switching; Frame relay; ATM.
	Queuing Analysis in Communication Networks– [10L] Introduction to queuing models; Little's theorem; M/M/1,M/M/m queues; Networks of queues; M/G/1 queues; M/G/1 queues with occupancy distribution; M/G/1 queues with vacations, reservations, Priority queues; Stability of queuing systems; Multiple access and ALOHA; Stabilized ALOHA; Tree algorithms; CSMA, CSMA/CD and Ethernet
	Network Layer Concepts – [5L]
	Internetworks; Addressing; Routing; ARP; IP; ICMP; IPV6. Transport Layer Concepts– [5L]
	Process to process delivery; User Datagram Protocol (UDP); Transmission Control Protocol (TCP); Data traffic; Congestion control; Quality of Service(QoS); Integrated services; Differentiated services; QoS in switched networks
	 Routing and Flow Control– [8L] High speed LANs; Token rings; Introduction to Switch Architecture; High speed switch scheduling; Broadcast routing and spanning trees; Shortest path routing; Distributed routing algorithms; Optimal routing; Flow control window/credit schemes; Flow control rate based schemes; ATM networks. Application Layer, WWW and HTTP – [4L]
	Domain Name System, Dynamic Domain Name System; Encapsulation; Remote Logging; Electronic mail and File transfer; HTTP architecture; Simple Network Management Protocol (SNMP); Multimedia; Digitizing Audio and Video; Audio and Video compression; Streaming stored Audio/Video; Streaming live Audio/Video; Real time interactive Audio/Video; RTP; RTCP; Voice over IP.
Text Books,	Text Books:
and/or reference material	 Ferouzan, Behrouz A., "Data Communications and Networking", TMH. William Stallings, "Data and Computer Communication", Pearson Education. Bertsekas, Dimitri, and Robert Gallager, "Data Networks", Upper Saddle River, NJ: Prentice Hall
	Reference Books:
	 Tanenbaum , A.S., "Computer Networks", Upper Saddle River, NJ: Prentice Hall Black, Ulylers D., "Data Communication and Distributed Networks", PHI.

COURSE ARTICULATION MATRIX

Mapping CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)

RO/PSO	PO	PO	PO	РО	PO	РО	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
CO	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	2	1	1	2	1	2	2	1	2	1	2	2	2	2	

101 | Page

CO#2	2	2	2	2	1	1	1	1	1	1	2	3	2	2	2
CO#3	2	2	2	2	1	1	1	1	1	1	2	3	1	2	2
CO#4	2	2	2	2	1	1	1	1	1	1	2	3	1	2	2
CO#5	3	3	3	3	2	2	2	1	1	1	1	2	2	3	3
CO#6	3	3	3	3	2	2	2	1	1	1	1	2	2	3	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

-	•	t of Electronics and	1	-	-	40					
Course	Title of the course	Program Core			contact hours		Credit				
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total					
		(PEL)	(L)	(T)	(P)	Hours					
ECE619	Mobile Computing	PEL	3	0	0	3	3				
Pre-requisi	tes	Course Assessmer		I	I	1					
		(Continuous Asses				erm (ET))					
Data Comm	unication and	CA+ MT + ET [CA:	15%, MT: 2	5%, ET: 60%	6]						
Computer N	letworks (ECE618)										
Course	CO1: Intr	oduce to the basic o	f Wireless N	letworks.							
Outcomes	CO2: Pre	eparing the right ba	ackground	to take up	research w	orks in e	mergin				
	wireless	technologies and Int	ernet of Thi	ngs.							
	 CO3: To i 	introduce the scopes	s of using se	ensing, edge	e computing,	Machine	learning				
	mechanis	sms in pervasive cyb	er physical :	systems.							
	CO4: Able	e to understand the	innovation	opportunity	y in IoT appli	cation seg	ments.				
	CO5: Har	• CO5: Hands-on experience on Wireless Networks & amp; Mobile Computing.									
Topics	Module 1: Physi	cal Layer (6 Hours)									
Covered	Bit transmission	over Wireless, Vary	Much diffe	rent from V	Vired Networ	٠k.					
	Module 2: Mac	Layer (8 Hours)									
	Access in Share	ed Medium, Differe	ence betwe	een Wired	MAC &	o; Wirele	ss MAC				
	Different Type	of MACs (a) Rand	om MAC	(b) Schedu	iled MAC, E	ixamples	of MA				
	Implementation	(WiFi Protocol802	.11, Blueto	oth Protoco	ol805.15).	-					
	Module 3: Netw	ork Layer (8 Hours)									
		g, Proactive Routin	ng, DSR Pri	nciple, AO	DV Principle	, Location	n Awar				
		Network, Delay Tol	-	•	•						
	-	mp; Applications, Ro									
		np; Focus, Maxprop S		•		, 1	, ,				
		port Layer (8 Hours)									
		nd rationale, Differ		een Wired	TCP and V	Vireless T	CP. Oo				
		f Wireless Networks.					.,				
	Module 5: Mode										
		lodelling of Network	Eunctional	lities - Com	bining them	to derive	d overa				
	performance.										
	•	Study: Implementat	ion of onno	rtunistic Ne	etworks in Ch	allenged	Networ				
	scenarios (4 hou					ianen bea					
	•	Mechanism (b) Sy	nc - Trans	forring the	information	n in Colla	horativ				
		ne Dashboard (Inforr		-							
Text Books			nation Sum								
and/or	,	nunication", by Joch	on Schillor I								
reference		working" A kumar, D									
material		nmunication", T. S. R	-		-						
material	5. WITELESS CON		αμμαμυιί, Η	eaisuii, idl	est eution.						

Research Papers: 1. IEEE Infocom Tutorials slides by Prof. NitinVaidya. Others: Tools: • Sniffer Tool (Wireshark) • Simulation Tools: OMNET ONE

COURSE ARTICULATION MATRIX

Mapp	ing of C	CO (Cou	urse Ou	utcome	e) to PC) (Prog	ramm	e Outc	ome) a	nd PSC) (Prog	gramm	e Specifi	c Outcon	ne)
PO/PSO CO	PO #1	PO #2	PO #3	РО #4	PO #5	PO #6	PO #7	PO #8	PO #9	PO #10	PO #11	PO #12	PSO# 1	PSO# 2	PSO# 3
CO#1	3	3	2	1	1	1	1	1	-	2	-	2	2	2	3
CO#2	3	2	2	2	2	1	1	-	-	1	1	2	3	2	3
CO#3	3	2	3	3	3	2	2	1	-	3	3	2	3	3	3
CO#4	3	3	2	1	1	1	1	1	-	2	-	2	2	2	3
CO#5	3	2	2	2	2	1	1	-	-	1	1	2	3	2	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

NS3

2: Moderate (Medium) 3: Substantial (High)

	Departme	ent of Electronics and	d Communie	cation Engin	eering						
Course	Title of the course	Program Core	Total	Number of c	ontact hours	= 42	Credit				
Code		(PCR) / Electives	Lecture	Tutorial	Practical	Total					
		(PEL)	(L)	(T)	(P)	Hours					
ECE620	Nanoelectronics	PEL	3	0	0	3	3				
Pre-requisi	tes	Course Assessmer									
		(Continuous (CT),	Mid-Term (MT) and End	Assessment	(EA))					
Electronic D											
Circuits (EC	C302),										
Physics of S	emiconductor										
Devices (PH	C331)										
Course	 CO1: Understa 	and state of the art in	n semicond	uctor device	physics and r	naterials					
Outcomes	technology to	enable the Nano-Ele	ectronics.								
	CO2: Apply the	e fundamentals of cl	assical CMC	OS technolog	у.						
	-	nt the scaling of MO			-						
	 CO4: Apprehe 	nd the need of non-	classical tra	nsistors with	new device s	structure a	ind				
	Nano-materia	s.									
Topics	Module I: (L – 4)										
Covered	Introduction to n	anotechnology, the s	size of thing	gs, history of	nanotechnol	ogy, fabric	ation				
	method (top-down and bottoms-up), emerging applications of nanotechnology										
	Module II: (L – 8)									
	Electronic and Optical properties of nanostructures. Energy sub-bands. Electron										

	transport in two –dimensional electron gas (density of states), Carrier scattering, resistance of a ballistic conductor, Transmission probability calculation, Electron tunneling, Resonant tunneling, Coupled nanoscale structures and Super lattices. Module III: (L – 10) Shrink-down approaches: Electronic devices Based on Nanostructures: Advance Heterostructure Devices, Downscaling of the MOSFET. Nanoscale FET Transistors, the Ballistic FET, Resonant Tunneling Devices and Circuits, Single Electron Transistor and Related Devices. Devices based on carbon nanotubes, Spintronic Devices. Module IV: (L – 10) Optoelectronic Devices using Nanostructures: Quantum well and Quantum Dot LASERS, Quantum Cascade LASER, Quantum well infrared photo detector, Super lattice LASER. Module V: (L – 10) Nanotechnology: Deposition techniques for Nanoscale Devices, Nanolithography, Self- Assembly Techniques, Nanomaterials, Nanoparticles, Nanowires, Nanomagnetic Materials, Nanostructure Surfaces; Instrumentation for nanoscale electronics: The Atomic Force Microscope (AFM), Scanning Tunneling Microscope and scanning near field optical microscope.
Text Books, and/or	 Introduction to Nanotechnology, C.P. Poole Jr., F.J. Owens, Wiley (2003). Nanoelectronics and Information Technology (Advanced Electronic Materials and
reference	Novel Devices), WaserRanier, Wiley-VCH (2003).
material	3. Nanosystems, K.E. Drexler, Wiley (1992)
	4. The Physics of Low-Dimensional Semiconductors, John H. Davies, Cambridge
	University Press, 1998.
	5. Fundamentals of Modern VLSI Devices, Y. Taur and T. Ning, Cambridge
	University Press.
	6. "Nanoelectronics and Nanosystems," Karl Goser, Springer, 2004

COURSE ARTICULATION MATRIX

Mapping	of CO (Course	e Outco	ome) t	o PO (Progra	mme	Outcor	me) ar	nd PSO	(Prog	ramme	e Specifi	c Outco	me)
PO/PSO CO	PO #1	PO #2	PO #3	РО #4	PO #5	PO #6	PO #7	PO #8	PO #9	РО #10	PO #11	PO #12	PSO #1	PSO #2	PSO #3
CO#1	3	3	3	2	2	-	-	-	-	-	-	3	3	2	2
CO#2	2	2	3	2	3	-	1	-	-	-	-	2	2	3	2
CO#3	2	2	3	2	1	-	-	-	-	-	-	2	3	2	2
CO#4	2	3	2	3	3	2	1	1	-	-	-	2	3	3	2

Correlation levels 1, 2 or 3 as defined below:

	Departme	ent of Electronics and	d Communio	cation Engine	ering							
Course	Title of the course	Program Core	Total	Number of co	ontact hours	= 42	Credit					
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total						
		(PEL)	(L)	(T)	(P)	Hours						
ECE621	Measurement and	PEL	3	0	0	3	3					
	Instrumentation											
Pre-requisi	tes	Course Assessmer	nt methods									
		(Continuous (CT),	Mid-Term (MT) and End	Assessment	(EA))						
None		CT+MT+EA										
Course	CO#1: Understan	O#1: Understand characteristics of general measurement system										
Outcomes	CO#2: Apply qua	O#2: Apply qualitative analysis techniques in general measurement system										
	CO#3: Apply qua	CO#3: Apply quantitative analysis techniques in general measurement system										
	CO#4: Understan	d basic building bloc	ks of gener	al measurem	ent system							
		neral measurement s	•									
		e complex designs in										
Topics		surement system, St	atic and dy	namic charac	teristics of m	easureme	nt					
Covered	systems [8L]											
	-	ct, two port network				nal noise [6L],					
		noice and Economics	of Measure	ement Syster	ns [3L]							
	4. Lagrangian d											
	5. Sensing elem		D. L.		,							
	•	ioning and Processin	•	sentation [6L	.]							
Taut Da alua		in measurement sys	tem: [9L]									
Text Books		ext Books: Principles of Measurement Systems, John Bentley, 3rd Edition.										
and/or	Reference Books	•	s, john Ben	liey, sru Edit	1011.							
reference		1. Mechatronics, A. Preumont.										
material	,		acuramant	Dovid A Do	JI Ord Edition	~						
	2. Electronic Inst	rumentation and Me	asurements	s, Daviù A. Be	en, siù Euitioi	1.						

COURSE ARTICULATION MATRIX

Mapping o	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO	РО	РО	PO	РО	PO	РО	РО	РО	РО	РО	РО	PO	PSO	PSO	PSO
СО	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#1	#12	#1	#2	#3
											1				
CO#1	3	2	1	1	1	1	1	1	1	1	1	1	3	2	1
CO#2	3	2	1	1	1	1	1	1	1	1	1	1	3	2	1
CO#3	2	3	1	1	1	1	1	1	1	1	1	1	3	2	1
CO#4	1	1	3	2	1	1	1	1	1	1	1	1	2	3	1
CO#5	1	1	3	2	1	1	1	1	1	1	1	1	2	3	1
CO#6	1	1	2	3	1	1	1	1	1	1	1	1	2	3	1

Correlation levels 1, 2 or 3 as defined below:

		t of Electronics and	1										
Course		Program Core	Total N		ontact hours								
Code	Title of the course	(PCR) / Elective	Lecture	Tutorial	Practical	Total	Credi						
Coue		(PEL)	(L)	(T)	(P)	Hours							
ECE622	Digital IC Design	PEL	3	0	0	3	3						
Pr	e-requisites	Course Asses					ster						
Digital Cir	cuits and Systems	Assignments	-		assessment (I		tor						
_	(ECC402)		-	Examinatio		nu semes	lei						
Course		urse, a student will be able to:											
Outcomes		e characteristics of CMOS inverter and interconnects.											
	CO#2: Study the Stat	-			erter								
	CO#3: Learn the basi	•											
	CO#4: Analyze the p												
	CO#5: Illustrate the o		•	-									
	CO#6: Understand	the recent trends	in VLSI De	sign & its	research is	sues in i	ndustry						
	academia												
Topics	Module-I: (L – 3)												
Covered	Overview of VLSI D	esign. Historical ne	orspective (verview o	f VISI design	method	ologies						
covercu	VLSI design flow, d		•		-		-						
		•	•		•		•						
	design styles, design quality, packaging technology, CAD technology, ASIC Design flow.												
	Module-II: (L – 6) Fabrication of MOSFETs: Fabrication process flow- basic steps, the CMOS n-Well proces												
	. ,	EFTs. Eabrication pr	ocess flow.	. hasic stor	ns the CMO	S n_\//oll	nrocos						
	Fabrication of MOS					S n-Well	proces						
	Fabrication of MOS layout design rules, s					S n-Well	proces						
	Fabrication of MOS layout design rules, s Module-III: (L – 6)	stick diagram, full-cu	istom mask	layout desi	gn.								
	Fabrication of MOS layout design rules, s Module-III: (L – 6) MOS Transistor: Th	stick diagram, full-cu ne metal oxide sei	istom mask miconducto	layout desi r (MOS) s	gn. tructure, Mo	OS syster	n und						
	Fabrication of MOS layout design rules, s Module-III: (L – 6) MOS Transistor: Th external bias, struct	stick diagram, full-cu ne metal oxide ser ure and operation o	istom mask miconducto f MOS tran	layout desi r (MOS) s sistor (MOS	gn. tructure, M(GFET), MOSFE	OS syster ET current	n und						
	Fabrication of MOS layout design rules, s Module-III: (L – 6) MOS Transistor: Th external bias, structu characteristics, MOS	stick diagram, full-cu ne metal oxide ser ure and operation o	istom mask miconducto f MOS tran	layout desi r (MOS) s sistor (MOS	gn. tructure, M(GFET), MOSFE	OS syster ET current	n und						
	Fabrication of MOS layout design rules, s Module-III: (L – 6) MOS Transistor: Th external bias, structor characteristics, MOS Module-IV: (L – 4)	stick diagram, full-cu ne metal oxide sec ure and operation o FET scaling and sma	istom mask miconducto f MOS tran II-geometry	layout desi r (MOS) s sistor (MOS effects, Mo	gn. tructure, M(FET), MOSFE DSFET capaci	OS syster ET current tances.	n unde t-voltag						
	Fabrication of MOS layout design rules, s Module-III: (L – 6) MOS Transistor: Th external bias, structor characteristics, MOS Module-IV: (L – 4) Modelling of MOS	stick diagram, full-cu ne metal oxide ser ure and operation o FET scaling and sma Transistors: Basic c	istom mask miconducto f MOS tran II-geometry concepts, st	layout desi r (MOS) s sistor (MOS effects, Mo	gn. tructure, M(FET), MOSFE DSFET capaci	OS syster ET current tances.	n unde t-voltag						
	Fabrication of MOS layout design rules, s Module-III: $(L - 6)$ MOS Transistor: Thexternal bias, structure characteristics, MOS Module-IV: $(L - 4)$ Modelling of MOS models, comparison	stick diagram, full-cu ne metal oxide ser ure and operation o FET scaling and sma Transistors: Basic c	istom mask miconducto f MOS tran II-geometry concepts, st	layout desi r (MOS) s sistor (MOS effects, Mo	gn. tructure, M(FET), MOSFE DSFET capaci	OS syster ET current tances.	n unde t-voltag						
	Fabrication of MOS layout design rules, s Module-III: $(L - 6)$ MOS Transistor: The external bias, structor characteristics, MOS Module-IV: $(L - 4)$ Modelling of MOS models, comparison Module-V: $(L - 4)$	stick diagram, full-cu ne metal oxide sec ure and operation o FET scaling and sma Transistors: Basic o of SPICE MOSFET m	ustom mask miconducto f MOS tran II-geometry concepts, st odels.	layout desi r (MOS) s sistor (MOS effects, Mo ate-of-art l	gn. tructure, MG FET), MOSFE DSFET capaci MOSFET mod	OS systen ET current tances. dels, capa	n und t-voltag						
	Fabrication of MOS layout design rules, s Module-III: $(L - 6)$ MOS Transistor: The external bias, structor characteristics, MOS Module-IV: $(L - 4)$ Modelling of MOS models, comparison Module-V: $(L - 4)$ MOS Inverter (Station	stick diagram, full-cu ne metal oxide ser ure and operation o FET scaling and sma Transistors: Basic c of SPICE MOSFET m c Characteristics): R	ustom mask miconducto f MOS tran II-geometry concepts, st odels.	layout desi r (MOS) s sistor (MOS effects, Mo ate-of-art l	gn. tructure, MG FET), MOSFE DSFET capaci MOSFET mod	OS systen ET current tances. dels, capa	n und t-voltag						
	Fabrication of MOS layout design rules, s Module-III: $(L - 6)$ MOS Transistor: Thexternal bias, structure characteristics, MOS Module-IV: $(L - 4)$ Modelling of MOS models, comparison Module-V: $(L - 4)$ MOS Inverter (Stational Component)	stick diagram, full-cu ne metal oxide ser ure and operation o FET scaling and sma Transistors: Basic c of SPICE MOSFET m c Characteristics): R	ustom mask miconducto f MOS tran II-geometry concepts, st odels.	layout desi r (MOS) s sistor (MOS effects, Mo ate-of-art l	gn. tructure, MG FET), MOSFE DSFET capaci MOSFET mod	OS systen ET current tances. dels, capa	n und t-voltag						
	Fabrication of MOS layout design rules, s Module-III: $(L - 6)$ MOS Transistor: The external bias, structure characteristics, MOS Module-IV: $(L - 4)$ Modelling of MOS models, comparison Module-V: $(L - 4)$ MOS Inverter (Station load, CMOS inverter Module-VI: $(L - 4)$	stick diagram, full-cu ne metal oxide sec ure and operation o FET scaling and sma Transistors: Basic c of SPICE MOSFET m c Characteristics): R	istom mask miconducto f MOS tran II-geometry concepts, st odels. esistive-loa	layout desi r (MOS) s sistor (MOS effects, Mo ate-of-art l d inverter,	gn. tructure, MG FET), MOSFE DSFET capaci MOSFET mod inverter with	OS systen ET current tances. dels, capa n-type M	n und t-voltag dicitance 10SFET						
	Fabrication of MOS layout design rules, s Module-III: $(L - 6)$ MOS Transistor: The external bias, structor characteristics, MOS Module-IV: $(L - 4)$ Modelling of MOS models, comparison Module-V: $(L - 4)$ MOS Inverter (Station load, CMOS inverter Module-VI: $(L - 4)$ MOS Inverters (S	stick diagram, full-cu ne metal oxide ser ure and operation o FET scaling and sma Transistors: Basic co of SPICE MOSFET m c Characteristics): R witching Characte	istom mask miconducto f MOS tran II-geometry concepts, st odels. esistive-loa eristics and	layout desi r (MOS) s sistor (MOS effects, Mo ate-of-art l d inverter, d Intercor	gn. tructure, MG FET), MOSFE DSFET capaci MOSFET mod inverter with mects effe	OS systen ET current tances. dels, capa n-type M c ts): Del	n und t-voltag dcitanco 10SFET ay-timo						
	Fabrication of MOS layout design rules, s Module-III: $(L - 6)$ MOS Transistor: The external bias, structure characteristics, MOS Module-IV: $(L - 4)$ Modelling of MOS models, comparison Module-V: $(L - 4)$ MOS Inverter (Stational load, CMOS inverter Module-VI: $(L - 4)$ MOS Inverters (Stational)	stick diagram, full-cu ne metal oxide ser ure and operation o FET scaling and sma Transistors: Basic o of SPICE MOSFET m c Characteristics): R witching Characte on of delay times, lo	istom mask miconducto f MOS tran II-geometry concepts, st odels. esistive-loa eristics and ogical effort	layout desi r (MOS) s sistor (MOS effects, Mo ate-of-art I d inverter, d Intercor s, inverter o	gn. tructure, MG SFET), MOSFE DSFET capaci MOSFET mod inverter with inects effe d design with c	OS systen ET current tances. dels, capa n-type M c ts): Del delay cons	n und -voltag icitance 10SFET ay-time						
	Fabrication of MOS layout design rules, s Module-III: $(L - 6)$ MOS Transistor: The external bias, structure characteristics, MOS Module-IV: $(L - 4)$ Modelling of MOS models, comparison Module-V: $(L - 4)$ MOS Inverter (Stational load, CMOS inverter Module-VI: $(L - 4)$ MOS Inverters (Stational definitions, calculations)	stick diagram, full-cu ne metal oxide ser ure and operation o FET scaling and sma Transistors: Basic o of SPICE MOSFET m c Characteristics): R witching Characte on of delay times, lo onnect parasitics, ca	istom mask miconducto f MOS tran II-geometry concepts, st odels. esistive-loa eristics and ogical effort Iculation of	layout desi r (MOS) s sistor (MOS effects, Mo ate-of-art I d inverter, d inverter, s, inverter o interconne	gn. tructure, MG SFET), MOSFE DSFET capaci MOSFET mod inverter with inects effe d design with c	OS systen ET current tances. dels, capa n-type M c ts): Del delay cons	n und -voltag icitance 10SFET ay-time						
	Fabrication of MOS layout design rules, s Module-III: $(L - 6)$ MOS Transistor: The external bias, structor characteristics, MOS Module-IV: $(L - 4)$ Modelling of MOS models, comparison Module-V: $(L - 4)$ MOS Inverter (Station load, CMOS inverter Module-VI: $(L - 4)$ MOS Inverters (Station definitions, calculation estimation of intercor Chip (NoC), switching	stick diagram, full-cu ne metal oxide ser ure and operation o FET scaling and sma Transistors: Basic o of SPICE MOSFET m c Characteristics): R witching Characte on of delay times, lo onnect parasitics, ca	istom mask miconducto f MOS tran II-geometry concepts, st odels. esistive-loa eristics and ogical effort Iculation of	layout desi r (MOS) s sistor (MOS effects, Mo ate-of-art I d inverter, d inverter, s, inverter o interconne	gn. tructure, MG SFET), MOSFE DSFET capaci MOSFET mod inverter with inects effe d design with c	OS systen ET current tances. dels, capa n-type M c ts): Del delay cons	n und -voltag icitance 10SFET ay-time						
	Fabrication of MOS layout design rules, s Module-III: $(L - 6)$ MOS Transistor: The external bias, structure characteristics, MOS Module-IV: $(L - 4)$ Modelling of MOS models, comparison Module-V: $(L - 4)$ MOS Inverter (Stational load, CMOS inverter Module-VI: $(L - 4)$ MOS Inverters (Stational definitions, calculation estimation of intercon Chip (NoC), switching Module-VII: $(L - 5)$	stick diagram, full-cu ne metal oxide ser- ure and operation o FET scaling and sma Transistors: Basic of of SPICE MOSFET m c Characteristics): R witching Character on of delay times, lo onnect parasitics, ca g power dissipation	istom mask miconducto f MOS tran II-geometry concepts, st odels. esistive-loa eristics and ogical effort lculation of of CMOS in	layout desi r (MOS) s sistor (MOS effects, Mo ate-of-art I d inverter, d Intercor s, inverter o interconne verters.	gn. tructure, MG SFET), MOSFE DSFET capaci MOSFET mod inverter with inverter with design with c ct delay, Bus	OS systen ET current tances. dels, capa n-type M c ts): Del delay cons s vs. Netw	n und -voltag icitance 10SFET ay-time straints ork-on						
	Fabrication of MOS layout design rules, s Module-III: $(L - 6)$ MOS Transistor: The external bias, structure characteristics, MOS Module-IV: $(L - 4)$ Modelling of MOS models, comparison Module-V: $(L - 4)$ MOS Inverter (Station load, CMOS inverter Module-VI: $(L - 4)$ MOS Inverters (Station definitions, calculation estimation of intercor Chip (NoC), switching Module-VII: $(L - 5)$ Combination CMOS	stick diagram, full-cu ne metal oxide ser- ure and operation o FET scaling and sma Transistors: Basic of of SPICE MOSFET m c Characteristics): R witching Characte on of delay times, lo onnect parasitics, ca g power dissipation Logic Circuits: MC	istom mask miconducto f MOS tran II-geometry concepts, st odels. esistive-loa eristics and ogical effort lculation of of CMOS in OS logic circ	layout desi r (MOS) s sistor (MOS effects, Mo ate-of-art I d inverter, d inverter, s, inverter o interconne verters. uits with d	gn. tructure, MG FET), MOSFE DSFET capaci MOSFET mod inverter with inverter with design with c ct delay, Bus epletion nM	OS systen ET current tances. dels, capa n-type M c ts): Del delay cons s vs. Netw	n unde -voltag dicitance 10SFET ay-time straints ork-on						
	Fabrication of MOS layout design rules, s Module-III: $(L - 6)$ MOS Transistor: The external bias, structure characteristics, MOS Module-IV: $(L - 4)$ Modelling of MOS models, comparison Module-V: $(L - 4)$ MOS Inverter (Station load, CMOS inverter Module-VI: $(L - 4)$ MOS Inverters (S definitions, calculation estimation of intercor Chip (NoC), switching Module-VII: $(L - 5)$ Combination CMOS logic circuits, completion	stick diagram, full-cu ne metal oxide ser- ure and operation o FET scaling and sma Transistors: Basic of of SPICE MOSFET m c Characteristics): R witching Characte on of delay times, lo onnect parasitics, ca g power dissipation Logic Circuits: MC	istom mask miconducto f MOS tran II-geometry concepts, st odels. esistive-loa eristics and ogical effort lculation of of CMOS in OS logic circ	layout desi r (MOS) s sistor (MOS effects, Mo ate-of-art I d inverter, d inverter, s, inverter o interconne verters. uits with d	gn. tructure, MG FET), MOSFE DSFET capaci MOSFET mod inverter with inverter with design with c ct delay, Bus epletion nM	OS systen ET current tances. dels, capa n-type M c ts): Del delay cons s vs. Netw	n und c-voltag dcitance 1OSFET ay-time straints ork-on						
	Fabrication of MOS layout design rules, s Module-III: $(L - 6)$ MOS Transistor: The external bias, structor characteristics, MOS Module-IV: $(L - 4)$ Modelling of MOS models, comparison Module-V: $(L - 4)$ MOS Inverter (Station load, CMOS inverter Module-VI: $(L - 4)$ MOS Inverters (Station definitions, calculation estimation of intercor Chip (NoC), switchin Module-VII: $(L - 5)$ Combination CMOS logic circuits, complet Module-VIII: $(L - 5)$	stick diagram, full-cu me metal oxide ser- ure and operation of FET scaling and sma Transistors: Basic of of SPICE MOSFET m c Characteristics): R witching Character on of delay times, lo onnect parasitics, ca g power dissipation Logic Circuits: MO ex logic circuits. CMO	esistive-loa eristics and ogical effort lculation of of CMOS in Sologic circo Sologic circo	layout desi r (MOS) s sistor (MOS effects, Mo ate-of-art I d inverter, d inverter, s, inverter of interconne verters. uits with d sion gates (gn. tructure, MG FET), MOSFE DSFET capaci MOSFET mod inverter with onects effect design with c ct delay, Bus epletion nM pass gates).	OS system ET current tances. dels, capa n-type M c ts): Dela delay cons s vs. Netw	n und c-voltag dcitance 10SFET ay-time traints ork-on						
	Fabrication of MOS layout design rules, s Module-III: $(L - 6)$ MOS Transistor: The external bias, structure characteristics, MOS Module-IV: $(L - 4)$ Modelling of MOS models, comparison Module-V: $(L - 4)$ MOS Inverter (Station load, CMOS inverter Module-VI: $(L - 4)$ MOS Inverters (Station definitions, calculation estimation of interco Chip (NoC), switching Module-VII: $(L - 5)$ Combination CMOS logic circuits, complete Module-VIII: $(L - 5)$ Sequential MOS log	stick diagram, full-cu ne metal oxide ser- ure and operation o FET scaling and sma Transistors: Basic co of SPICE MOSFET m c Characteristics): R witching Characte on of delay times, lo onnect parasitics, ca g power dissipation Logic Circuits: MC ex logic circuits. CMC ic circuits: Behavior	istom mask miconducto f MOS tran II-geometry concepts, st odels. esistive-loa eristics and ogical effort lculation of of CMOS in OS logic circ OS transmiss of bistable	layout desi r (MOS) s sistor (MOS effects, Mo ate-of-art I d inverter, d inverter, d inverter, s, inverter of interconne verters. uits with d sion gates (elements, S	gn. tructure, MG SFET), MOSFE DSFET capaci MOSFET mod inverter with anects effed design with c ct delay, Bus epletion nM pass gates).	OS system ET current tances. dels, capa n-type M c ts): Dela delay cons s vs. Netw	n und t-voltag dcitanco 10SFET ay-timo traints ork-on						
	Fabrication of MOS layout design rules, s Module-III: $(L - 6)$ MOS Transistor: The external bias, structor characteristics, MOS Module-IV: $(L - 4)$ Modelling of MOS models, comparison Module-V: $(L - 4)$ MOS Inverter (Station load, CMOS inverter Module-VI: $(L - 4)$ MOS Inverters (Station definitions, calculation estimation of intercor Chip (NoC), switchin Module-VII: $(L - 5)$ Combination CMOS logic circuits, complet Module-VIII: $(L - 5)$	stick diagram, full-cu ne metal oxide ser- ure and operation o FET scaling and sma Transistors: Basic co of SPICE MOSFET m c Characteristics): R witching Characte on of delay times, lo onnect parasitics, ca g power dissipation Logic Circuits: MC ex logic circuits. CMC ic circuits: Behavior	istom mask miconducto f MOS tran II-geometry concepts, st odels. esistive-loa eristics and ogical effort lculation of of CMOS in OS logic circ OS transmiss of bistable	layout desi r (MOS) s sistor (MOS effects, Mo ate-of-art I d inverter, d inverter, d inverter, s, inverter of interconne verters. uits with d sion gates (elements, S	gn. tructure, MG SFET), MOSFE DSFET capaci MOSFET mod inverter with anects effed design with c ct delay, Bus epletion nM pass gates).	OS system ET current tances. dels, capa n-type M c ts): Dela delay cons s vs. Netw	n und t-voltag dcitanco 10SFET ay-timo traints ork-on						
	Fabrication of MOS layout design rules, s Module-III: $(L - 6)$ MOS Transistor: The external bias, structure characteristics, MOS Module-IV: $(L - 4)$ Modelling of MOS models, comparison Module-V: $(L - 4)$ MOS Inverter (Station load, CMOS inverter Module-VI: $(L - 4)$ MOS Inverters (Station definitions, calculation estimation of interco Chip (NoC), switching Module-VII: $(L - 5)$ Combination CMOS logic circuits, complete Module-VIII: $(L - 5)$ Sequential MOS log	stick diagram, full-cu ne metal oxide ser- ure and operation o FET scaling and sma Transistors: Basic co of SPICE MOSFET m c Characteristics): R witching Characte on of delay times, lo onnect parasitics, ca g power dissipation Logic Circuits: MC ex logic circuits. CMC ic circuits: Behavior	istom mask miconducto f MOS tran II-geometry concepts, st odels. esistive-loa eristics and ogical effort lculation of of CMOS in OS logic circ OS transmiss of bistable	layout desi r (MOS) s sistor (MOS effects, Mo ate-of-art I d inverter, d inverter, d inverter, s, inverter of interconne verters. uits with d sion gates (elements, S	gn. tructure, MG SFET), MOSFE DSFET capaci MOSFET mod inverter with anects effed design with c ct delay, Bus epletion nM pass gates).	OS system ET current tances. dels, capa n-type M c ts): Dela delay cons s vs. Netw	n und c-voltag dcitance 10SFET ay-time traints ork-on						
	Fabrication of MOS layout design rules, s Module-III: $(L - 6)$ MOS Transistor: The external bias, structure characteristics, MOS Module-IV: $(L - 4)$ Modelling of MOS models, comparison Module-V: $(L - 4)$ MOS Inverter (Station load, CMOS inverter Module-VI: $(L - 4)$ MOS Inverters (S definitions, calculation estimation of interco Chip (NoC), switching Module-VII: $(L - 5)$ Combination CMOS logic circuits, complete Module-VIII: $(L - 5)$ Sequential MOS log and flip-flop circuits,	stick diagram, full-cu me metal oxide ser- ure and operation of FET scaling and sma Transistors: Basic of of SPICE MOSFET m c Characteristics): R witching Character on of delay times, lo onnect parasitics, ca g power dissipation Logic Circuits: MC ex logic circuits. CMC ic circuits: Behavior CMOS D-latch and e	esistive-loa esistive-loa eristics and ogical effort lculation of of CMOS in DS logic circ DS transmiss of bistable edge-trigger	layout desi r (MOS) s sistor (MOS effects, MO ate-of-art I d inverter, d inverter, s, inverter s, inverter of interconne verters. uits with d sion gates (elements, S red flip-flop	gn. tructure, MG FET), MOSFE DSFET capaci MOSFET mod inverter with nects effect design with c ct delay, Bus epletion nM pass gates). R latch circu	OS system ET current tances. dels, capa n n-type M c ts): Del delay cons s vs. Netw IOS loads, its, clocke	n und c-voltag dcitance 10SFET ay-time straints ork-on , CMO!						
	Fabrication of MOS layout design rules, s Module-III: $(L - 6)$ MOS Transistor: The external bias, structor characteristics, MOS Module-IV: $(L - 4)$ Modelling of MOS models, comparison Module-V: $(L - 4)$ MOS Inverter (Station load, CMOS inverter Module-VI: $(L - 4)$ MOS Inverters (Station definitions, calculation estimation of intercor Chip (NoC), switching Module-VII: $(L - 5)$ Combination CMOS logic circuits, complete Module-VIII: $(L - 5)$ Sequential MOS log and flip-flop circuits, Module-IX: $(L - 5)$	stick diagram, full-cu me metal oxide ser- ure and operation of FET scaling and sma Transistors: Basic co of SPICE MOSFET m c Characteristics): R witching Character on of delay times, lo onnect parasitics, ca g power dissipation Logic Circuits: MC ex logic circuits. CMC ic circuits: Behavior CMOS D-latch and e uits: basic principle	istom mask miconducto f MOS tran II-geometry concepts, st odels. esistive-loa eristics and ogical effort lculation of of CMOS in: DS logic circ DS transmiss of bistable edge-triggel of pass tra	layout desi r (MOS) s sistor (MOS effects, Mo ate-of-art I d inverter, d inverter, d inverter, s, inverter of interconne verters. uits with d sion gates (elements, S red flip-flop ansistor cir	gn. tructure, MG FET), MOSFE DSFET capaci MOSFET mod inverter with mects effed design with c ct delay, Bus epletion nM pass gates). R latch circu cuits, voltag	OS system ET current tances. dels, capa i n-type M c ts): Dela delay cons s vs. Netw IOS loads, its, clocke e bootstr	n unde t-voltag acitance 10SFET ay-time traints ork-on , CMO ed latch apping						

Text	Text Book:
Books,	1. CMOS Digital Integrated Circuits, Sung-Mo Kang, YusufLeblebici, 3rd edition, Tata
and/or	McGraw-Hill, 2003
reference	Reference Books:
material	1. J. Rabaey, A. Chandrakasan and B. Nikolic, Digital Integrated Circuits: A Design
	Perspective, 2nd Edition, Prentice Hall 2004.
	2. N. H. E. Weste and C. Harris, "Principles of CMOS VLSI Design: A System Perspective,
	3rd Edition, Pearson Education 2007.

COURSE ARTICULATION MATRIX

Mappin	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO	РО	РО	РО	РО	РО	PO	РО	PO	РО	PO	PO	PO	PSO#	PSO#	PSO
СО	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	1	2	#3
CO#1	2	1	3	3	1	1	1	1	1	1	1	2	2	2	1
CO#2	3	2	2	1	1	1	1	1	1	1	1	1	2	1	1
CO#3	3	3	3	1	1	1	1	1	1	1	1	1	3	3	2
CO#4	1	2	3	2	1	1	1	1	1	1	1	1	3	3	2
CO#5	2	3	1	2	1	2	2	1	1	1	1	1	2	3	2
CO#6	3	2	3	2	1	1	1	1	1	1	1	1	3	3	2

Correlation levels 1, 2 or 3 as defined below:

	Departme	nt of Electronics and	d Communio	cation Engine	ering						
Course	Title of the course	Program Core	-								
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total					
		(PEL)	(L)	(T)	(P)	Hours					
ECE623	Mechatronics	PEL	3	0	0	3	3				
	Systems										
Pre-requisi	tes	Course Assessment methods (Continuous (CT), Mid-Term (MT), End									
		Assessment (EA))									
NIL		CT+MT+EA									
Course	CO1: Unders	stand characteristics of mechatronics system									
Outcomes	comes • CO2: Apply qualitative analysis techniques in mechatronics system										
	CO3: Apply	quantitative analysis	s technique	s in mechatro	onics system						
	CO4: Unders	tand basic building	blocks of ge	neral mecha	tronics syste	m					
	CO5: Design	general mechatronics system with functional blocks									
	CO6: Investi	gate complex desigr	ns in mecha	tronics syste	m and case s	tudies					
Topics	Introduction to r	nechatronics [1L]									
Covered	Sensors and Trai	nsducers, Pneumatic	and Hydrau	ulic, Mechani	ical Actuatior	n Systems,					
	Electrical actuati	on systems [8L]									
	Signal Condition	ing circuits [4L]									
	Digital Processing Elements [3L]										
	Data Presentatio	Data Presentation Systems [2L]									
	System models and Dynamic response [3L]										
	System Transfer functions and frequency response [3L]										

	Closed loop controllers [2L] Artificial Intelligence [2L] Microcontrollers and programming [4L] Interfacing and communication [2L] Case studies [8L]
Text Books, and/or reference material	Text Book : 1. Mechatronics, by W. Bolton, Fourth Edition, Pearson

COURSE ARTICULATION MATRIX

Mappi	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO	РО	РО	PO	PO	PO	РО	РО	PO	РО	РО	PO	PO	PSO	PSO	PSO
со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	2	1	1	1	1	1	1	1	1	1	1	3	2	1
CO#2	3	2	1	1	1	1	1	1	1	1	1	1	3	2	1
CO#3	2	3	1	1	1	1	1	1	1	1	1	1	3	2	1
CO#4	1	1	3	2	1	1	1	1	1	1	1	1	2	3	1
CO#5	1	1	3	2	1	1	1	1	1	1	1	1	2	3	1
CO#6	1	1	2	3	1	1	1	1	1	1	1	1	1	3	2

Correlation levels 1, 2 or 3 as defined below:

Department of Electronics and Communication Engineering											
Course	Title of the course	Program Core	Program Core Total Number of contact hours =								
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total					
		(PEL)	(L)	(T)	(P)	Hours					
ECE624	Power Electronics	PEL	3	0	0	3	3				
Pre-requisi	tes	Course Assessment methods:									
		(Continuous Assessment (CA), Mid-semester assessment (MA) and end									
		assessment (EA))									
Basic Electi	ronics (ECC01),	Assignments, Quiz/class test, Mid-semester Examination and End Semester									
Signals and	Systems (ECC303)	Examination									
Course	CO1: To lear	n the details of power semiconductor switches (Construction, Characteristics									
Outcomes	and operatio	n) and working of va	rious types	of converter	s.						
	CO2: To learn how to analyse the converters and design the components of them, und										
various load types.											
	CO3: To learn about the control of various converters. Recognize the role pow										
	electronics play in the improvement of energy usage efficiency and the applications of										
	power electronics in emerging areas.										

Topics	Module-1 (duration- 4 hrs)											
Covered	Introduction: Application of Power Electronics to :											
	1) Motor control with emphasis on Traction and Industrial Process control											
	2) Power Supplies - Revolution in Personal Computers UPS											
	3) Power Transmission - Facts Technology, HVDC											
	4) Chemical Process											
	5) Battery charging											
	6) Power extraction from non-conventional enery sources											
	7) Automotive electronics											
	8) High energy physics Evolution of Power Electronics Days of Mercury arc rectification											
	forerunner of Power Electronics Invention of SCR and its impact											
	Advent of Self-commutated switches and their impact											
	Module-2 (duration-4hrs)											
	Structure of Power Electronics: How structurally power electronics differs from low power											
	analog electronics Different types of switches											
	Power Diodes: from the viewpoint of an application engineer											
	SCR: Device structure, Static characteristic, dynamic characteristic constraints of Turn on and											
	Turn off time, different relevant ratings.											
	Module-3 (duration-4hrs)											
	Diode rectifiers Applications: Power Supplies, Front end converter for ac motor drives, battery											
	charger, chemical process											
	1) Single phase Half wave with R load											
	2) Single phase Half wave with R-L load											
	3) Single phase Full bridge rectifier with dc link capacitive filter, issue of harmonics											
	4) Three phase Full bridge rectifier with dc link capacitive filter, issue of harmonics											
	Module-4 (duration-5hrs)											
	AC to DC controlled converters											
	Application: DC Motor Drives Battery chargers											
	HVDC transmission											
	1) Single phase fully controlled AC to DC converter											
	i) Principle of operation: Issue of line commutation											
	ii) Continuous mode of conduction: expression for average output voltage											
	iii) Modes of operation in the voltage-current plane											
	iv) discontinuous mode of conduction											
	v) analysis with R-L-E load, significance of R-L-E load											
	vi) operation as an inverter: constraints for line commutation											
	vii) Dual converter: motivation Simultaneous and nonsimultaneous control											
	vii) input displacement factor, distortion factor, harmonics											
	viii) Effect of source inductance											
	ix) Requirement of snubber											
	2) Single phase half controlled converter:											
	operating principle,											
	input displacement factor											
	Modes of operation in the voltage-current plane											
	Modes of operation in the voltage-current plane											
	Module-5 (duration-2 hrs)											
	Three phase half wave ac to dc converter											
	Principle of operation											
	Derivation of o/p voltage issue of dc magnetization of the input transformer											
	Module-6 (duration-3 hrs)											
	Three phase fully controlled ac to dc converter											

	Principle of operation
	Derivation of average output voltage
	Derivation of displacement factor
	Inverter mode of operation
	Constraints of commutation in inverter mode
	Effect of source inductance
	Moduel - 7 (duration-4 hrs)
	Limitation of Line commutated converters
	Single phase unity powerfactor converter
	Principle of switched Power power conversion
	Bi-directional Power converters
	Module- 8 (duration-8 hrs)
	DC- DC Power Converters
	Limitations of Linear Power supplies
	Switched Power Power supplies (Buck, Buck-Boost, Boost,
	Cuk, Fly-back and Forward Convverters)
	Transfer fucntion for these converters
	Module-9 (duration-8 hrs)
	Motivation
	DC- AC Power Converters
	Principle of operation of Inverters
	Half bridge, full bridge, three phase- six step operation, voltage control, PWM techniques
Text Books,	Text Books:
and/or	1. M.H.Rashid, 'Power Electronics: Circuits, Devices and Applications', Pearson Education,
reference	PHI Third Edition, New Delhi, 2004.
material	2. P.S.Bimbra "Power Electronics" Khanna Publishers, third Edition, 2003.
	3. L. Umanand, " Power Electronics Essentials and Applications", Wiley, 2010.
	Reference Books:
	1. Joseph Vithayathil, 'Power Electronics, Principles and Applications', McGraw Hill Series,
	6th Reprint, 2013.
	2. Ashfaq Ahmed Power Electronics for Technology Pearson Education, Indian reprint,
	2003.
	3. Philip T. Krein, "Elements of Power Electronics" Oxford University Press, 2004 Edition.
	4. Ned Mohan, Tore. M. Undel and, William. P. Robbins, 'Power Electronics: Converters,
	Applications and Design', John Wiley and sons, third edition, 2003.
	5. Daniel.W.Hart, "Power Electronics", Indian Edition, McGraw Hill, 3rd Print.

Mappir	Mapping of Course Outcome (CO) to Programme Outcome (PO) and Programme Specific Outcome(PSO)														
PO / PSO CO	PO# 1	PO# 2	PO# 3	PO# 4	PO# 5	PO# 6	PO# 7	PO# 8	PO# 9	PO# 10	PO# 11	PO# 12	PSO# 1	PSO# 2	PSO# 3
CO#1	2	2	2	1	2	2	1	1	1	1	1	1	2	1	1
CO#2	3	2	3	1	2	2	1	1	1	2	1	1	2	1	1
CO#3	3	3	3	1	1	2	1	1	2	2	1	1	3	3	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)	2: Moderate (Medium)	3: Substantial (High)
-----------------	----------------------	-----------------------

110 | P a g e

	Depar	tment of Electronics	s and Comm	nunication Eng	ineering								
_		Program Core			ontact hours =	42							
Course Code	Title of the course	(PCR) / Elective (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	Credit						
ECE625	Optical Communication	PEL	3	0	0	3	3						
Pre-requisi	tes	Course Assessmen	t methods (Continuous As	sessment (CA)	, Mid-seme	ester						
		assessment (MA) a	and end asse	essment (EA)):									
Transmissio (ECC403),		Assignments, Quiz, Examination	/class test, I	Mid-semester	Examination a	nd End Serr	lester						
(ECC401), Digital Com	nmunication												
(ECC501) Course	CO#1 Students w	l ill be able to unders	tand circuit	c and system I	oval implaman	tation in lie	htwayo						
Outcomes	technology.			s anu system i	everimplemen		ntwave						
Guicomes		ts can design compo	onents and	choose appror	oriate sources :	and receive	rs for an						
	optical network.												
	•	CO#3 Understanding the usage of OTDR in monitoring an optical communication system.											
Topics	Introduction to f	iber optics, principl	es of optica	al fiber; Advar	ntages. Elemer	nts of an o	otical fiber						
Covered/	transmission link	[4L]											
Syllabus	Optical fiber cha	racteristics, types of optical fibers; Attenuation and Dispersion in optical fiber:											
	Signal attenuatio	on and distortion in optical fibers, Dispersion effects in optical fibers.; OTDR [10L]											
		Structure and materials of LED and LD sources operating characteristics and											
		bilities of the LED and LD sources. Source to Fiber Power launching and coupling,											
	_	s for coupling improvement, Fiber to fiber couplings and alignment methods,											
		es, Fiber Connectors					c						
		Optical receiver co	•	•	•	•							
	-	and Digital receiv				-							
		ical data buses, Link ing: Fiber optics ir	•										
		IET/ SDH network el				iceture, se	NEI/ JUII						
		tions and future p	_	-	s. multimode	intensity se	ensors and						
		rferometric sensors	•	•		•							
Text Books	-		<u> </u>	·									
and/or	[1] J. M. Senior,	"Optical Fiber Comm	nunications	", PHI, 2nd Ed.									
Reference		ptical Fiber Commur											
material	[3] Ghatak & Thy	agarajan, "Introduct	ion to fiber	Optics", Caml	oridge Universi	ity press.							
	[4] Henry Zange	er and Cynthia Zai	nger, <i>Fiber</i>	Optics Com	munication an	nd Other A	pplication,						
	Macmillan Pu	Publishing Company, Singapore 1991.											
	Reference Books												
		.K.Jain, "Optical Con			-								
		yagarajan, "Contem	porary Opt	ics", Series Tit	le: Optical Phy	ysics and Ei	ngineering,						
	Springer				6 • 6 • 1 =		eth e i						
		and PochiYeh, Phot	•	cal electronics	tor Modern Co	ommunicati	on, 6" Ed.,						
	New York, O	xford University Pre	55										

COURSE ARTICULATION MATRIX

Mapping	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO / PSO CO	PO# 1	PO# 2	PO# 3	РО# 4	PO# 5	PO# 6	PO# 7	PO# 8	PO# 9	PO# 10	PO# 11	PO# 12	PSO# 1	PSO# 2	PSO# 3
CO#1	2	1	2	1	2	2	1	1	1	1	1	1	2	1	1
CO#2	2	2	2	3	2	2	1	1	1	2	1	1	2	1	1
CO#3	3	3	3	1	1	2	1	1	2	2	1	1	3	3	2

Correlation levels 1, 2 or 3 as defined below:

	SEVENTH SEMESTER Department of Electronics and Communication Engineering													
	•		r											
Course	Title of the course	Program Core	Total N	lumber of c	ontact hours	5 = 43	Credit							
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total								
		(PEL)	(L)	(T)	(P)	Hours								
MSC731	Principles of	PCR	3	0	0	3	3							
	Management													
Pre-requisit	tes	Course Assessme				. (= .))								
		(Continuous (CT),	Mid-Term (MII) and Er	id Assessmer	nt (EA))								
NIL		CT+MT+EA												
Course		• CO1:To make budding engineers aware of various management functions required for												
Outcomes	any organizatio	ny organization O2:To impart knowledge on various tools and techniques applied by the executives o												
		-	ous tools an	d technique	es applied by	the exec	utives of							
	an organization		c											
	-	otential engineers a	ware of ma	nagerial fui	nction so tha	t it would	help for							
	their profession													
		 CO4:To impart knowledge on org. activities operational & strategic both in nature CO5: To impart knowledge on each functional area of management like Marketing. 												
	-	• C05: To impart knowledge on each functional area of management like Marketing, Finance, Behavioral Science, Quantitative Techniques and Decision Science												
Taulas				-										
Topics	-	ent Functions and E												
Covered		ment -micro; Porte			-									
		nd roles of manage			-	ia enviro	nmentai							
		DT, Application of B		-		acting too	hniquas							
		tive tools and techr PERT & CPM as con	•	-		asting tec	nniques,							
		ng and delivering	-		-	understar	nding of							
		umer behavior-fund	•				-							
	Product Life cycle			-		-	0.							
	UNIT IV: Behavi	oral management	of individu	ual: Motiva	ition, Leader	rship, Per	ception,							
	Learning. (8L)													
		and Accounting: B			-	-								
		nal Accounts, Analy			•		fit (CVP)							
	1 .	view of financial ma	rket with sp	pecial refere	ence to India	. (12L)								
Text Books,														
and/or		anagement, 11th Edi	-		•									
reference	•	lanagement 15th E		•		-								
material	-	nt Principles, Proces		ractice, firs	t edition, Ar	nil Bhat a	nd Arya							
		rd Higher educatior												
	-	hal Behavior,13 th e												
	5. Operations I	Management, 7th eo	d.(Quality c	ontrol, Fore	casting), Buf	fa&Sarin,	Willey							

SEVENTH SEMESTER

COURSE ARTICULATION MATRIX

PO/PSO	PO	РО	РО	PO	РО	РО	PO	PO	PO	РО	PO	РО	PSO	PSO	PSO
со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	-	-	-	-	-	-	-	-	3	2	2	-	2	1	1
CO#2	-	-	I	2	-	-	-	-	2	2	-	-	2	1	1
CO#3	-	-	I	2	-	-	-	-	3	2	-	-	2	1	1
CO#4	-	-	I	-	-	-	1	-	3	-	-	-	2	1	1
CO#5	-	-	-	2	-	-	-	-	2	2	2	-	2	1	1

113 | Page

		Departme	ent of Electronics an	d Commun	ication Engir	neering									
Course	Title o	of the course	Program Core		-	contact hours	s = 30	Credit							
Code			(PCR) / Elective	Lecture	Tutorial	Practical	Total								
			(PEL)	(L)	(T)	(P)	Hours								
ECS751	Com	puter Aided	PCR	0	0	3	3	1.5							
	D	esign Lab													
Pre-requisit	tes		Course Assessme	nt methods	(Continuous	s (CT) and en	d assessme	nt (EA))							
VLSI Design	Lab (E	CS652)	CT+EA												
Course	•	CO1: Employ	CAD tools to carry of	out Analog	IC Design usi	ng bottom u	p approach								
Outcomes	•	CO2: Illustrat	e NMOS and PMOS	transistor a	and its use in	Analog Circu	uit Design								
	•	-	common source am	•		•									
	•	-	and implementatior		•	s of a process	sor.								
	•		e the performance of	of VLSI Desi	gns.										
Topics	Lis	t of experimer				- 6	6								
Covered			1. Plot the NMOS I/V characteristics and measure its VT, $\mu_N C_{OX}$, g_m , f_T at the DC bias												
		point of $V_{DS} = 0.5 V$, and $V_{GS} = 0.4 V$. Also determine the corresponding values for PMOS transistor at $V_{DS} = 0.6 V$. $V_{CS} = 0.5 V$													
		PMOS transistor at $V_{DS} = 0.6 V$, $V_{GS} = 0.5 V$ 2. For an NMOS with W/L = 500n/500n, plot g_m , $\frac{g_m}{I_P}$, V_T , f_T , r_{out} and self-gain by													
		2. For an N	MOS with $W/L = 500$)n/500n, pl	ot g_m , $rac{g_m}{I_D}$, V_T	r, f_T, r_{out} and	d self-gain b	бу							
			$g_{0} < V_{GS} < 1V$ for V												
			the VTC of pseudo-												
			argins and t_{PLH}, t_{PHI}		-		tatic powe	r and							
		-	power dissipation w		-	-									
		-	CMOS Common Sou	•				-							
			lot its frequency re	sponse wh	en a load of	r 1 p⊦ is con	nected. M	easure its							
		•	ssipation (PD).	of Allord		low for NAIDC									
		-	nd implementation of implementation of the second sec			-									
		-	nd implementation	•		•		rocossor							
		-	nd implementation	•	-		•								
		-	processor.	or concerna			2 Shine by 2	modules							
			nd implementation	of RAM and	Register file	es for MIPS p	rocessor.								
		•	nd implementation		•	•		ЛIPS							
		processo	•	· · · ·											
Text Books,	, 1.	B. Razavi, "De	esign of Analog CM	OS Integrate	ed Circuits", I	McGraw-Hill	Education,	2002.							
and/or	2.	Allan Hasting	s, "The Art of Analo	g Layout", I	Prentice Hall	, Second Edit	ion, 2005.								
reference	3.	N. H. E. West	e and C. Harris, "Pr	inciples of (CMOS VLSI D	esign: A Syst	em Perspe	<i>ctive",</i> 3rd							
material		Edition, Pears	son Education 2007.	•											

COURSE ARTICULATION MATRIX

Mappi	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO	PO	РО	РО	РО	PO	РО	PO	РО	PO	РО	PO	РО	PSO	PSO	PSO
со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	2	1	2	1	1	1	1	1	1	1	1	1	2	2	2
CO#2	3	2	2	1	1	1	1	1	1	1	1	1	2	2	2
CO#3	3	3	3	1	2	2	1	1	1	1	1	1	3	3	2
CO#4	1	2	1	1	1	1	1	1	1	1	1	1	2	2	2
CO#5	2	3	1	2	2	1	1	1	1	1	1	1	3	3	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

114 | Page

	Departmen	Department of Electronics and Communication Engineering Fitle of the course Program Core Total Number of contact hours = 40 Cre													
Course	Title of the course	Program Core		-	-	5 = 40	Credit								
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total									
		(PEL)	(L)	(T)	(P)	Hours									
ECS752	Electronic System	PCR	0	0	4	4	2								
	Design Lab														
Pre-requis	tes	Course Assessmer													
		(Continuous (CT) a	and end ass	essment (E	A))										
	Devices and Circuits I,	CT+EA													
	ECC504), Electrical														
Technolog															
Course		stand experimental o		edure											
Outcomes		p troubleshooting te	-												
	-	electronic systems f	-												
		p skill to use moderr	-	ng software	tools										
		p technical report w	•												
		 CO6: Develop team activity for executing projects Introduction to electronic system design 													
Topics		· •													
Covered		 1. Induction class on System Design, Fabrication and Troubleshooting Power supply design 													
		. Application of diffe													
		. Regulated DC powe		-											
		ents with Sensors ar . LDR, Phototransist			nte Hall cone	or induct	ivo								
		oickup	01, Plezoele	curic eleme	nits, nali sens	501, IIIUUCI	live								
		b. DC motor and BLD	C motor driv	ving solend	nid actuator	Sneed cor	ntrol of								
		motor using PWM,		-											
	Design c	of signal conditioning		,											
	-	6. Electronic signal ar		trumentatio	on amplifier o	design									
		. Low pass, High pas	-		-	-									
		of signal processing s	-		, C										
	8	8. Introduction to mid	crocontrolle	ers 8052/Ar	duino/Raspb	erry pi									
	<u>c</u>). Data acquisition via	a microcont	rollers and	interfacing w	vith Matla	b								
	 Integrat 	ion of data presentat	tion elemer	nts											
	1	0. Interfacing displa	y unit with i	microcontro	ollers										
	1	.1. Data presentatior	n using GUI												
Text Books															
and/or	-	Measurement Syste		•											
reference		rcuits: Analysis and I	• •		amen										
material		s, by W. Bolton, Fou	rth Edition,	Pearson											
	-	amentals by Floyd													
	5. Laboratory E	experiments manual													

COURSE ARTICULATION MATRIX

Mapping CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)

PO/PSO	РО	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	РО	PSO	PSO	PSO
со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	З	2	1	1	1	-	-	-	1	1	1	1	3	2	1
CO#2	3	2	1	1	1	-	-	-	1	1	1	1	3	2	1

CO#3	1	2	3	1	1	-	-	-	1	1	1	1	1	3	2
CO#4	1	2	1	1	3	-	-	-	1	1	1	1	3	2	1
CO#5	1	1	1	1	1	1	1	2	1	3	1	1	3	2	1
CO#6	1	1	1	1	1	1	1	1	2	1	2	1	3	2	1

Correlation levels 1, 2 or 3 as defined below:

ight (Low)	2: Moderate (Medium)												
		t of Electronics and (1										
Course	Title of the course	Program Core	Total N	lumber of o	contact hours	5 = 18	Credi						
Code		(PCR) /	Lecture	Tutorial	Practical	Total							
		Elective (PEL)	(L)	(T)	(P)	Hours							
ECS753	Advanced	PCR	0	0	3	3	1.5						
	Communication												
	Lab												
Pre-requisi	ites	Course Assessment methods											
		(Continuous (CT) and end assessment (EA))											
NIL		CT+EA											
Course	On successful cor	npletion of this cour	se, student	s should ha	ve the skills a	and knowl	edge to						
Outcomes	CO#1. Understar	nd Monte Carlo Simu	lation of Di	screte and	Continuous r	andom va	riables						
	CO#2. Estimate E	Bit Error Rate (BER) o	of a Commu	nication Sys	stems								
	CO#3. Evaluate th	ne performance of si	mple modu	lation over	AWGN and F	ading Cha	annel						
	(typically Rayleig	-											
		ing channels and und	derstand Di	gital Comm	unication co	ncepts in o	context						
	to fading channel												
		e performance of sim	nple Networ	rk Access pr	otocols like /	ALOHA an	d S-						
	ALOHA by simula												
		CO#6. Develop expertise in writing program using MATLAB and tools like SIMULINK.											
Topics		ent Simulation :											
Covered/		ation of random vari											
Syllabus		(i) Poisson (ii) Binor											
		us (i) Gaussian (ii) E											
		i) Generate Gaussiar			ted Random	variable.							
		r.v-s with suitable c	•										
		rate the PDF (proba	•	•									
		e simulated pdf with	i the corres	ponding an	alytical pul-s	. Isnow tr	iis for						
) and b(iv) cases]. ation of AWGN chan	nal and PE) norforma	aco of BDSK								
		e BPSK at baseband,		-		Gaussian	noico o						
	-	noise var. Rx the sigr	-		• •								
	-	eration).											
		BER vsEb/No.											
		ate Packet error rate	PFR) in ah	ove for an	arhitrary na	cket of siz	el=						
	500 bits		. (1 =11) 11 42		an brenary pa		0 2						
		ne above Expt no.2 (a	a) for a Ravl	leigh faded	channel.								
		a PN sequence of (•		plot the							
		•	enerated PN sequence.										
		the arrival process in		•		al mean ai	rrival						
		example 0.84 calls/s			- /								
		ove simulate Through		OHA and S_{-}	ALOHA proto	ncol(s)							
	05115 05					2001(37.							

	and SIMULINK)
Text Books,	1. Simulation Modeling and Analysis : Law and Kelton McGraw-Hill
and/or	2. Simulation : Sheldon Ross, Academic Press
Reference	3. Contemporary Communication Systems : M.F. Mesiya McGraw-Hill India
material	4. Modern Communication Systems using MATLAB, John Proakis, MasudSalehi and
	Gerhard Bauch, Third Ediation, CENGAGE Learning

COURSE ARTICULATION MATRIX

Mapping of C	:O (Co	urse O	utcon	ne) to	PO (Pr	ogran	nme O	utcon	ne) and	d PSO (Progra	mme S	pecific	Outcom	ne)
PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	PSO	PSO	PSO
CO	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	3	2	3	2	-	-	-	1	1	-	1	3	2	2
CO#2	3	3	3	2	-	-	-	-	-	1	-	1	3	2	2
CO#3	3	3	3	2	-	-	-	-	-	1	-	1	3	2	2
CO#4	3	3	1	2	1	-	-	-	1	1	-	2	3	2	2
CO#5	3	3	2	3	2	1	-	-	1	1	-	1	3	2	2
CO#6	3	2	2	2	3	-	-	-	2	1	-	2	3	2	2

Correlation levels 1, 2 or 3 as defined below:

	Departmen	t of Electronics and (Communica	ition Engine	ering						
Course	Title of the	Program Core	Total N	Number of c	contact hours	s = 43	Credit				
Code	course	(PCR) / Elective	Lecture	Tutorial	Practical	Total					
		(PEL)	(L)	(T)	(P)	Hours					
ECE710	Detection and	PEL	3	0	0	3	3				
	Estimation										
	Theory										
Pre-requisite	S	Course Assessment methods									
		(Continuous (CT), Mid-Term (MT) and End Assessment (EA))									
Probability T	heory for	CT+MT+EA									
Engineering /	Application										
(ECO541) / a	ny equivalent										
content from	NPTEL, SWAYAM										
etc.											
Course	• CO1: To	familiarize students	with Class	ical Statisti	ical Inferenc	e Techniq	ues and				
Outcomes	their app	lications to Commur	nication and	l Signal pro	cessing						
	• CO2: To f	amiliarize students v	with Signal I	Detection T	heory						
	• CO3: To (develop required m	nathematica	al skills for	design and i	mplement	ation of				
	statistical	signal processing al	gorithm								
Topics	Topic 1:Random	n Signal and Rando	om Process	s Basics	[5]						
Covered	Important prob	bability distributio	on functio	ons: Gaus	sian, Chi-so	quare, R	ayleigh,				
		s t, F, Cauchy etc. E				-					
		Random Process, Correlation properties, Stationarity, Ergodicity, Gaussian Process,									
		Power Spectral Density									
		Topic 2: Classical Decision Theory [10]									
	-	Introduction to signal detection problems									
L			UDICITIS								

	Device Criteriano Diagram Una etherais testing. Magna humatherais testing
	Bayes Criterion: Binary Hypothesis testing, M-ary hypothesis testing
	Maximum Likelihood based Optimal detection, LRT (Likelihood Ratio Test) and
	performance.
	Neyman Pearson Criterion for optimal detection, Minimum probability of error
	detector, Minimax Criterion
	Topic 3:Detection of Deterministic and random Signal[8]
	Matched Filter Detection, Optimal detection for white and Nonwhite noise,
	Multiple Hypothesis testing, Estimator Correlator, Energy Detector
	Topic 5: Detection of Signal with unknown parameters [6]
	Composite Hypothesis Testing : Bayesian Approach and GLRT, Sinusoidal detection
	Topic 6: Estimation Techniques [8]
	Introduction to signal Estimation, Unbiased estimators, Minimum variance
	unbiased estimator (MVUE), MVUE Criterion, Cramer Rao Lower bound(CRLB),
	Best Linear Unbiased Estimator(BLUE), General CRLB for signals in white noise,
	Least Square Estimation and Recursive Least Square Estimation.
	Topic 7:Random parameter Estimation: [6]
	Bayesian Formulation, Minimum mean square error (MMSE) and MAP
	estimation,Linear MMSE estimation, Wiener and optimum MMSE Filtering
Text Books,	Text Books:
and/or	
reference	1.Fundamentals of Statistical Signal Processing, (Vol 1 & Vol 2)
material	S.M. Kay, Pearson
	2. Detection, Estimation, and Modulation Theory, Part-1, VanTrees, Jhon Wiley
	Reference Books:
	1. Signal Detection and Estimation, Second Edition, Mourad Barkat Artechhouse.
	2. An Introduction to Signal detection and Estimation: H. Vincent Poor, Springer-
	Verlag

Mapping of C	:O (Co	urse o	utcon	ne) to	PO (Pi	rogran	nme C)utcon	ne) an	d PSO	(Progra	amme S	Specific	Outco	me)
PO/PSO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO
C0	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	3	3	2	2	1	1	1	1	1	1	1	3	2	2
CO#2	3	3	3	2	1	1	1	1	1	1	1	1	3	2	2
CO#3	3	3	3	2	1	1	2	1	1	1	1	1	3	2	2

Correlation levels 1, 2 or 3 as defined below:

```
1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)
```

	Department of Electronics and Communication Engineering									
Course	Title of the course	Program Core	Program Core Total Number of contact hours =							
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total				
		(PEL)	(L)	(T)	(P)	Hours				
ECE711	Information Theory	PEL	3	0	0	3	3			
	and Coding									
Pre-requis	ites	Course Assessmer	nt methods							
		(Continuous (CT), Mid-Term (MT) and End Assessment (EA))								
NIL		CT+MT+EA								

Course	CO.1 Understand the concept of Information and quantitative from of characterization of
Outcomes	information.
	CO.2 Understand abstraction of digital information transfer and characterizestorage/transfer
	from mathematical viewpoint.
	CO.3 Gain knowledge about techniques for information compression and its application
	CO.4Understand Channel Capacity and Shannon's Law on Information capacity. Appreciate
	information theoretic results as fundamental limits on performance of Communication
	systems. Analyze Capacity of Various Channels.
	CO.5 Understand the fundamental difference between Source Coding theorem and Channel
	Coding theorem.
	CO.6 Understand different approaches for error correction and suitability of theirApplication.
	Develop understanding of Block Coding.
Topics	1. Information Theory : Introduction, Uncertainty and Information, Entropy, Relative
Covered	Entropy, Mutual Information, Chain Rules, Differential Entropy, Properties of Differential
	entropy, Jensen's inequality, data processing Inequality. (9L)
	2. Source Coding: Source Coding Theorem, Kraft Inequality, Optimal codes, Huffman Code,
	Shannon Fano Elias Coding, Lempel Ziv Coding, Rate Distortion function (8L)
	3. Channel Capacity and Coding : Channel Models, Channel Capacity, Binary Symmetric
	Channel, Binary Erasure Channel, Channel Coding Theorem, Information Capacity Theorem,
	Shannon's limit, Gaussian Channel, Parallel Gaussian Channel. (10L)
	4. Error Control Coding: Linear algebra fundamentals, Linear Block Codes, Generator matrix,
	Parity Check Matrix, Encoding and Decoding of linear Block Codes, Syndrome Decoding,
	Hamming Code, properties of linear Block Code, Cyclic Codes: Algebraic description,
	Encoding and Decoding of Cyclic codes , Convolution Codes: Definition, Encoding Trellis and
Table	State representation, , Viterbi decoding, Error probability, Viterbi Decoding. (15L)
Text Books,	1. Information Theory Coding and Cryptography, Third Edition, Ranjan Bose, McGraw-
and/or	Hill Education Pvt. Limited.
reference	2. Elements of Information Theory, Thomas M.Cover and Joy.A. Thomas, Wiley
material	3. Error Control Coding, Fundamentals and Application Shu Lin, Daniel J. Costello,
	Pearson, India
	4. Error Correction Coding Mathematical Methods and application, Todd K. Moon,
	Wiley, India.

COURSE ARTICULATION MATRIX

Mapping	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	PO	PSO	PSO	PSO
со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	2	2	2	1	2	1	1	1	1	1	1	3	2	1
CO#2	3	2	2	2	1	2	1	1	1	1	1	1	3	2	1
CO#3	3	3	3	2	1	2	1	1	1	1	1	1	3	3	2
CO#4	3	2	3	2	1	1	1	1	1	1	1	1	3	3	2
CO#5	3	3	2	3	1	1	1	1	1	1	1	1	3	2	2
CO#6	3	3	2	3	1	1	1	1	1	1	1	1	3	3	2

Correlation levels 1, 2 or 3 as defined below:

	D	epartment of Electro	nics and Comr	nunication Eng	gineering		
Course	Title of the	Program Core			ontact hours =	42	Credit
Code	course	(PCR) / Elective	Lecture (L)	Tutorial	Practical	Total	orean
couc	course	(PEL)		(T)	(P)	Hours	
ECE712	Analog IC	PEL	3	0	0	3	3
ECE/12	-	PEL	5	0	0	5	5
	Design						(===))
Pre-requisite	es	Course Assessment	: methods (Co	ntinuous (CA),	iviid Term(IVIT)	and End Teri	m (ET))
Electronic D	evices and	(CA+MT+ET=15+25	+60=100)				
Circuits I and	d II						
(ECC302, EC	C504)						
Course	CO1: Defi	ne various parameter	s/terms assoc	iated with MO	S transistors an	d Analog IC (design.
Outcomes		ribe the operation of				-	U
		e any given circuit usi		•			
		uate various perform		-	-		t & outoi
	range etc.	•	lance methos	Such as gain,		ipation/inpa	t & outp
	-	yze feedback circuit a	and determine	its poles zero	s gain margin	R nhaco mar	ain
		gn a Single stage Amp		•		•	-
Tapias					to meet the give	enspecificati	0115.
Topics		oduction to MOS (L –			and of CNAOS	****	
Covered		Physics – Gener		•		• • •	IVIUS I,
	Characteristic	s, Short Channel Effe	cts, Noise, Lar	ge Signal MOS	Device models	.	
			(,				
		all Signal MOS Model					
		apacitance, Small Sig				ance (front g	gate : g_ı
	output: g_ds,	back-gate:g_mb). Un	ity gain freque	ency calculation	n.		
	Module-3: Bas	ic MOS Amplifiers(L -	- 08)				
	Single Stage A	Amplifiers – Basic Co	oncepts, Com	mon Source S [.]	tage, Source Fo	ollower, Com	nmon Ga
	Stage, Cascod	e Stage, Calculation o	of Amplifier pa	rameters.			
	Module-4: Cur	rent Mirrors/Referen	ces (L – 03)				
	Current Mirro	r: Simple, Cascode, W	/ilson, Wide-S	wing.			
	Module-5: Free	quency Response of A	Amplifiers(L –	06)			
	Frequency Re	esponse of Amplifie	rs – Genera	l Consideratio	ons, Common	Source Stag	ge, Sour
		mmon Gate Stage,) - /
				-,			
	Module-6: Diff	erential Amplifier(L –	- 07)				
		mplifiers – Single En	-	ole ended Dif	ferential Onera	tion Basic I	Differenti
		- Mode Response, Di					Differenti
		- Mode Response, Di		with wies load	is, current min	or load.	
	Madula 7. Sina	la staga Onamns/l	07)				
	-	gle stage Opamps(L –	-	ne Single Ste	an On Amas	Two Store	00 1
		mplifiers – General		-		iwo stage	Oh Aut
		imitations(ICMR), Sle	w kate, Noise	and Offset in	op amps.		
	Module-8: Fee	араск (L — 05)					
	Feedback-Tvp						
		es, Nyquist plot, Stal		ncy compensat	tion techniques	, Miller com	pensatio
	pole splitting,	es, Nyquist plot, Stal Gain Margin, Phase N		ncy compensat	tion techniques	, Miller com	npensatio
				ncy compensat	tion techniques	, Miller com	ipensatio
Text Books,	pole splitting, Text Books:		Margin.				ipensatio
	pole splitting, Text Books: [1] Design of	Gain Margin, Phase N	Margin. ted Circuits, b	y BehzadRazav	ri, McGraw-Hill,	2014.	
Books,	pole splitting, Text Books: [1] Design of a [2] Adel Sedra	Gain Margin, Phase M Analog CMOS Integra	Margin. ted Circuits, b	y BehzadRazav	ri, McGraw-Hill,	2014.	

material	[3] Understanding Microelectronics: A Top-Down Approach by Franco Maloberti, Wiley (2011)
	Reference Books:
	[1]. Analysis and Design of Analog Integrated Circuit, Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, and
	Robert G. Meyer, John Wiley & Sons, Inc., 5th edition 2015
	[2]. CMOS: Circuit Design, Layout, and Simulation by R. Jacob Baker, Wiley-IEEE Press(2019)
	NPTEL/SWAYAM Video Lectures:
Video	https://www.youtube.com/watch?v=2i2PMtRDvE8&list=PLuv3GM6-gsE0ix0s_d6JNIQXePzXr3_GZ
Lectures	Prof. NagendraKrishnapura, IITM
	https://www.youtube.com/watch?v=pK2elUcXWzs&list=PLiDoPUX9nLkIw9EnIv_3K19wlcyJ6msYd
	[3]. Prof. BehzadRazavi, UCLA

COURSE ARTICULATION MATRIX

Mappi	ng of CO	D (Cou	rse Out	tcome)	to PO	(Prog	ramme	Outco	me) a	nd PSO) (Prog	ramme	e Specifi	c Outcor	ne)
PO/PSO	PO	PO	PO	PO	РО	РО	РО	PO	РО	РО	РО	PO	PSO	PSO	PSO#
со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	3
CO#1	2	1	3	3	1	1	1	1	1	1	1	2	2	2	1
CO#2	3	2	2	1	1	1	1	1	1	1	1	1	2	2	1
CO#3	3	3	3	1	1	1	1	1	1	1	1	1	3	3	2
CO#4	3	2	3	2	1	1	1	1	1	1	1	1	3	3	2
CO#5	2	3	1	1	1	2	2	1	1	1	1	1	2	3	1
CO#6	3	2	3	2	1	1	1	1	1	1	1	1	3	3	2

Correlation levels 1, 2 or 3 as defined below:

	Departr	nent of Electronics ar	nd Commun	ication Engin	eering							
Course		Program Core	Tota	l Number of c	ontact hours =	= 42						
Code	Title of the course	(PCR) / Elective	Lecture	Tutorial	Practical	Total	Credit					
Coue		(PEL)	(L)	(T)	(P)	Hours						
ECE713	FPGA based Design	PEL	3	0	0	3	3					
Pre-requis	ites	Course Assessment methods: (Continuous Assessment (CA: 15%), Mid-										
		Term Assessment	: (MA:25%)	and End-Term	n Assessment (EA:60%))						
Digital Circu	uits and Systems	Continuous Asses	sment (CA)	: Quizzes/Clas	ss tests/Assign	ments/At	tendance					
(ECC402),												
VLSI Design	(ECC602)											
Course	•CO1: Learn log	ic synthesis techniqu	es – two-lev	el and multil	evel synthesis.							
Outcomes	•CO2: Be able to	o design systems usir	ig FPGAs an	d CPLDs.								
	•CO3: Learn seq	uential machine desi	ign using FP	GAs.								
	•CO4: Learn to d	design systems for lo	w power op	eration.								
Topics	Module-I: (L – 04	4)										
Covered	Logic design fu	indamentals: Two l	evel synth	esis – SOP/	POS forms, L	ogic min.	imization,					
	Limitations of tw	o-level synthesis, int	roduction t	o multi-level	synthesis.							
	Module-II: (L – C	6)										
	Programmable	Logic Devices: Progr	ammable L	ogic Array (F	PLA) architect	ure; Prog	rammable					
	Array Logic (PAL), PAL vs. PROM, Fa	n-in expans	ion feature, <i>i</i>	Architecture fo	or sequen	tial circuit					
	implementation	Array Logic (PAL), PAL vs. PROM, Fan-in expansion feature, Architecture for sequential circui implementation, Typical PAL chips; Complex Programmable Logic Devices (CPLD).										
	Module-III: (L –	Module-III: (L – 06)										
	Programmable (Gate Arrays: Gate Arr	ay concept,	Mask progra	mmable and F	ield Prog	rammable					

	1
	Gate Arrays; Lookup tables (LUT) Configurable logic blocks (CLB), logic design using LUT's;
	Multi-level synthesis techniques – Factoring and Functional decomposition, Shannon's
	Expansion Theorem; Generalized FPGA Architecture; Introduction to CAD Tools for FPGA based
	design, design entry, and simulation – introduction to HDL, synthesis, post-synthesis
	simulation, interfacing external devices.
	Module-IV: (L – 08)
	Sequential Circuit Design: Finite State Machines, Moore and Mealy Machines; State diagrams,
	State table, State assignment, derivation of next-state and output expressions, state
	minimization; State assignment for low power operation; CAD tools for FSM synthesis;
	Designing a simple CPU, concept of embedded system.
	Module-V: (L – 02)
	Advanced features of modern FPGAs: Block RAMs, Embedded processor, Communication
	ports, Analog interface.
	Module-VI: (L – 06)
	FPGA as a Hardware Debugging platform: Hardware troubleshooting methods, Looking into
	the chip – Logic State Analyzer and its use; Concept of Hardware emulation – simulation vs.
	Emulation, FPGA as a Hardware emulator, Break-points and their utility, setting break-points in
	FPGA based design.
	Module-VII: (P – 8)
	Familiarizing with CAD tools, Design and synthesis of simple logic functions – Basic gates,
	adder/subtractor, decoder, encoder, multiplexer, demultiplexer; Interfacing external devices –
	setting user constraint file, interfacing input (switch) and output (LED) devices, BCD to seven-
	segment decoder, keyboard/display interface; designing memory elements and arrays;
	sequential machine design – sequence generators, timing generators, a typical machine design
	(example: vending machine); A simple CPU design, constructing a basic embedded system –
	interfacing on-chip CPU, memory and I/O ports.
	Module-VIII: (P – 2)
	Design analysis: Static timing analysis, Power analysis, Resource utilization, noise, clock
	network, DRC, debugging methods.
Text Books,	Text Books:
and/or	1. S. Brown and Z. Vranesic, "Fundamentals of Digital Logic with Verilog Design," McGraw
Reference	Hill Education Special India Edition (SIE), 2017.
Materials	Reference Book:
	1. J. Bhasker, "A Verilog HDL Primer", B.S. Publications, Hyderabad in arrangement with
	Star Galaxy Publishing, USA, 1999.

Mappi	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)													me)	
PO/PSO CO	PO #1	PO #2	PO #3	РО #4	PO #5	PO #6	PO #7	PO #8	PO #9	PO #10	PO #11	PO #12	PSO #1	PSO #2	PSO #3
CO#1	2	3	2	3	1	1	1	1	1	1	1	1	3	2	2
CO#2	2	2	2	2	1	2	1	1	1	1	1	1	3	2	2
CO#3	2	3	2	3	1	1	1	1	1	1	1	1	3	2	2
CO#4	2	1	1	2	1	1	1	1	1	1	1	1	2	2	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

122 | Page

	Departn	nent of Electronics ar	nd Commur	ication Engir	neering							
Course	Title of the course	Program Core	Total	Number of c	ontact hours	= 42	Credit					
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total						
		(PEL)	(L)	(T)	(P)	Hours						
ECE714	MEMS and	PEL	3	0	0	3	3					
	Microsystems											
	Technology											
Pre-requisi	tes	Course Assessmer										
		(Continuous (CT), Mid-Term (MT) and End Assessment (EA))										
NIL		CT+MT+EA										
Course	CO1: Unders	stand characteristics	of MEMS s	ystem								
Outcomes		stand basic building l	-		•							
		stand synthesis and		•								
		qualitative and quar		alysis technic	ques in gener	al MEMS sy	stems					
	•	techniques in MEMS										
		gate complex design	in MEMS	systems								
Topics	Fabrication proc	• •										
Covered	•	ng, Statics, Dynamics	(5L)									
	Quasi static anal											
	Elasticity, Struct	• •										
	Energy Methods											
		Domain, Fluids, Elect	ronics	(6L)								
	Noise (2L) Feedback systen	ns (2L)										
		EMS systems, Scaling	a offoct (2)	۱								
	Reliability of ME		g enect (SL)								
	· ·	• •										
Text Books												
and/or		Design by Stephen D	Senturia	Springer								
reference	Reference Book	-	i centaria, i	-F								
material			/inov. S. Go	palakrishnan	. K.N. Bhat. V	.K. Aatre G.	К.					
	Ananthasuresh,	Wiley	1. Micro and Smart Systems by K.J. Vinoy, S. Gopalakrishnan, K.N. Bhat, V.K. Aatre G.K. Ananthasuresh, Wiley									

COURSE ARTICULATION MATRIX

Марр	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO #1	PSO #2	PSO
	#1	#2	#3	#4	#5	#6	#7	#8	#9	#1	#1	#12			#3
со										0	1				
CO#1	3	2	1	1	1	1	1	1	1	1	1	1	3	2	1
CO#2	3	2	1	1	1	1	1	1	1	1	1	1	3	2	1
CO#3	3	2	1	1	1	1	1	1	1	1	1	1	3	2	1
CO#4	1	3	2	1	1	1	1	1	1	1	1	1	2	3	1
CO#5	1	1	3	2	1	1	1	1	1	1	1	1	2	3	1
CO#6	1	2	3	1	1	1	1	1	1	1	1	1	2	3	1

Correlation levels 1, 2 or 3 as defined below:

	Departme	nt of Electronics and	r				
Course	Title of the course	Program Core	Total	Number of co	ontact hours	= 42	Credit
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total	
		(PEL)	(L)	(T)	(P)	Hours	
ECE715	Machine Learning	PEL	3	0	0	3	3
Pre-requisit	es	Course Assessmer	nt methods:				
		Continuous (CT), r	nid-term (N	/IT), and End /	Assessment (EA)	
•	n to Computing r Programming ike Python, C++,	CT+MT+EA					
Course	After the complet	tion of the course th	e student w	/ill be able to	learn the fol	lowing:	
Outcomes		inguish between, su	•	•	•		arning
		ly the apt machine l	-				
		element various way	/s of select	ing suitable	model paran	neters for	differer
		learning techniques					
		dify existing machine	-	-	•		
		ve problems associat		-		-	
		racteristics such as	high dimei	nsionality, dy	namically gr	owing da	ta and
		r scalability issues.				1	
Tanias		dy of various machin	e learning a	algorithms ind	ciuding deep	learning	
Topics Covered	MODULE I INTRO	on to Machine Lea	orning Su	ponvisod Log	rning Uncu	nonvisod	Loarnin
Covereu	Reinforcement Le		arning, Su	Jerviseu Lea	ining ,onsu	pervised	Leannin
		s System, Perspective	es and Issue	es in Machine	learning Co	ncent l ea	rning
	MODULE II REGR				200111116,000		9
		Statistical Decision	Theory, Re	egression &	Classification	n, Bias —	Varianc
	-	, Multivariate Regre	•	0			
	MODULE III NEUF	RAL NETWORKS AND	SUPPORT	VECTOR MA	CHINE[L=8]		
	Multi-layer Perce	eptron , Training of	Multi -lay	er feed forw	ard neural r	network u	sing ba
	propagation algo	rithm ,Over-fitting o	f trained m	odel, Radial	Basis Functio	ons neural	networ
	Support Vector N	lachines					
		AND UNSUPERVISE					
	-	es, Decision Trees,		-			
	Regression Trees Algorithm	, Unsupervised Le	arning, Ga	ussian Mixtu	re Models,	K-means	clusterin
		NSIONALITY REDUC	TION [1=6]				
		eduction, Linear Disc		nalysis, Princi	pal Compone	ent Analys	is
		Y OF MACHINE LEAI		_	-		
		g machine (ELM),	-		-		
		and long short-ter		• • •	-		ed RNI
_		earning, Deep learnin	ng and Conv	olutional Ne	ural Network	(CNN).	
Text Books,				AL	_	" ~	
and/or		and, "Machine Lea					a Editio
Reference		II/CRC Machine Lear	-	-			
material	2. TOM IVI IVITCHE	ll, "Machine Learnin	g , FIIST EQI	uon, wcGrav		011, 2013.	

3.Satish Kumar, "Neural Networks: A Classroom Approach", McGraw-Hill (India), 2013 4.Shai Shalev-Shwartz and Shai Ben-David, "Understanding Machine Learning: From Theory to Algorithms, "Cambridge University Press", 2014

Reference Books:

1. Peter Flach, "Machine Learning: The Art and Science of Algorithms that Make Sense of Data", First Edition, Cambridge University Press, 2012.

2. Jason Bell, "Machine learning – Hands on for Developers and Technical Professionals", First Edition, Wiley, 2014

3. EthemAlpaydin, —Introduction to Machine Learning 3e (Adaptive Computation and Machine Learning Series), Third Edition, MIT Press, 2014

4.Simon Haykin, "Neural networks and learning machines," Pearson, 3rd edition, 2009 5.Charu C.Aggarwal, "Neural Networks and Deep learning," Springer, 2018

COURSE ARTICULATION MATRIX

Mappi	ng of C	O (Cou	irse Ou	itcome	e) to PO	D (Prog	gramm	e Outo	come)	& PSO	(Progra	amme	Specific	Outcom	e)
PO/PSO	РО	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO	PSO
со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	2	2	1	1	2	1	1	1	1	1	1	2	3	2
CO#2	3	3	3	2	2	2	1	1	1	1	1	1	3	2	2
CO#3	3	3	2	2	2	1	2	1	1	1	1	1	3	3	2
CO#4	3	2	2	3	3	2	1	1	1	1	1	1	3	3	2
CO#5	3	2	2	2	2	2	1	1	1	1	1	1	3	2	2
CO#6	3	3	2	2	2	2	1	2	1	1	1	2	3	2	2

Correlation levels 1, 2 or 3 as defined below:

	De	partment of Elect	ronics and (Communicat	ion Engineeri	ng	
Course	Title of the	Program Core			contact hour	-	Credit
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Elective (PEL)	(L)	(T)	(P)	Hours	
ECE716	Millimeter	PEL	3	0	0	3	3
	wave						
	Technology						
Pre-requisit	es	Course Assessm	ent method	ds		•	
		(Continuous (CT), Mid-Tern	n (MT) and E	nd Assessme	nt (EA))	
Electromag	netic Theory	CT+MT+EA					
and Transm	ission Lines						
(ECC403),							
Electronic D	evices and						
Circuits I an	d II						
(ECC302, EC	-						
	Engineering						
(ECC502)	1						
Course		1 Students will be	able to lear	rn the intrica	cies of desigr	n constraints	at mm wave
Outcomes		uencies					
		2 The basic trainin	-	-	-		equencies for
		Country's defense					6
		3 The students car	h design pla	inar circuits a	and can provi	de reasoning	for the
<u> </u>		ined results.		1 1	<u> </u>		
Topics		: mm wave spect					
Covered		ns. Difference in	High Trequ	Jency and r	elatively low	<i>i</i> trequency	nenaviour of
		·· · · · · · · · · · · · · · ·		-			
		uit components. N		on and desig	n of Lumped	components	at millimetre
	wave freque	uit components. N ncies. Realization		on and desig	n of Lumped	components	at millimetre
	wave freque (2H)	ncies. Realization	of reactive	on and desig elements as	n of Lumped mm wave p	components planar circuit	at millimetre components.
	wave freque (2H) Review of	ncies. Realization Transmission line	of reactive theory.	on and desig elements as Concept of	n of Lumped mm wave p Scattering	components blanar circuit Matrix N-pc	at millimetre components.
	wave freque (2H) Review of Properties of	ncies. Realization Transmission line S matrix, Transmi	of reactive theory. ssion matri	on and desig elements as Concept of	n of Lumped mm wave p Scattering	components blanar circuit Matrix N-pc	at millimetre components.
	wave freque (2H) Review of Properties of mm wave W	ncies. Realization Transmission line S matrix, Transmi aveguide and Res	of reactive theory. ssion matri onators	on and desig elements as Concept of x and their re	n of Lumped s mm wave p Scattering elationships	components blanar circuit Matrix N-pc (4H)	at millimetre components. prt networks-
	wave freque (2H) Review of Properties of mm wave W Rectangular	ncies. Realization Transmission line S matrix, Transmi aveguide and Res Waveguide- desig	of reactive theory. ssion matri onators n considera	on and desig elements as Concept of x and their re tion, TE and	n of Lumped s mm wave p Scattering elationships TM modes,	components blanar circuit Matrix N-pc (4H) TE ₁₀ mode ar	at millimetre components. ort networks- nalysis, cut-off
	wave freque (2H) Review of Properties of mm wave W Rectangular frequency, p	ncies. Realization Transmission line S matrix, Transmi aveguide and Res Waveguide- desig ropagation consta	of reactive theory. ssion matri onators n considera nt, intrinsic	on and desig elements as Concept of x and their ro tion, TE and wave imped	n of Lumped s mm wave p Scattering elationships TM modes, lance, phase	components blanar circuit Matrix N-pc (4H) TE ₁₀ mode ar and group ve	at millimetre components. ort networks- nalysis, cut-off elocity, power
	wave freque (2H) Review of Properties of mm wave W Rectangular frequency, p transmission	ncies. Realization Transmission line S matrix, Transmi aveguide and Res Waveguide- desig ropagation consta , attenuation, w	of reactive theory. ssion matri onators n considera nt, intrinsic aveguide	on and desig elements as Concept of x and their re- tion, TE and wave impec- excitation, v	n of Lumped s mm wave p Scattering elationships TM modes, lance, phase vall current;	components blanar circuit Matrix N-pc (4H) TE ₁₀ mode ar and group ve Introduction	at millimetre components. ort networks- nalysis, cut-off elocity, power n of circular
	wave freque (2H) Review of Properties of mm wave W Rectangular frequency, p transmission waveguide; I	ncies. Realization Transmission line S matrix, Transmi aveguide and Res Waveguide- desig ropagation consta , attenuation, w Rectangular wave	of reactive theory. ssion matri onators n considera nt, intrinsic aveguide	on and desig elements as Concept of x and their re- tion, TE and wave impec- excitation, v	n of Lumped s mm wave p Scattering elationships TM modes, lance, phase vall current;	components blanar circuit Matrix N-pc (4H) TE ₁₀ mode ar and group ve Introduction	at millimetre components. ort networks- nalysis, cut-off elocity, power n of circular
	wave freque (2H) Review of Properties of mm wave W Rectangular frequency, p transmission waveguide; I factor, excita	ncies. Realization Transmission line S matrix, Transmi aveguide and Res Waveguide- desig ropagation consta , attenuation, w Rectangular wave	of reactive theory. ssion matri onators n considera nt, intrinsic aveguide esor guide resor	on and desig elements as Concept of x and their ro tion, TE and wave impec excitation, v nator design	n of Lumped s mm wave p Scattering elationships TM modes, lance, phase vall current; consideratio	components blanar circuit Matrix N-pc (4H) TE ₁₀ mode ar and group ve Introduction	at millimetre components. ort networks- nalysis, cut-off elocity, power n of circular
	wave freque (2H) Review of Properties of mm wave W Rectangular frequency, p transmission waveguide; I factor, excita Planar Trans	ncies. Realization Transmission line S matrix, Transmi aveguide and Res Waveguide- desig ropagation consta , attenuation, w Rectangular wave tion. (6H)	of reactive theory. ssion matri onators n considera nt, intrinsic aveguide e guide resor Resonators	on and desig elements as Concept of x and their re- tion, TE and wave imped excitation, v nator design at mm Wav	n of Lumped s mm wave p Scattering elationships TM modes, lance, phase vall current; consideratio	components blanar circuit Matrix N-pc (4H) TE ₁₀ mode ar and group ve Introduction n, resonant	at millimetre components. ort networks- nalysis, cut-off elocity, power n of circular frequency, Q-
	wave freque (2H) Review of Properties of mm wave W Rectangular frequency, p transmission waveguide; I factor, excita Planar Trans Propagation	ncies. Realization Transmission line S matrix, Transmi aveguide and Res Waveguide- desig ropagation consta , attenuation, w Rectangular wave tion. (6H) mission lines and	of reactive theory. ssion matri onators n considera nt, intrinsic aveguide e guide resor Resonators mparison f	on and desig elements as Concept of x and their re- tion, TE and wave imped excitation, v hator design at mm Wav or different	n of Lumped s mm wave p Scattering elationships TM modes, lance, phase vall current; consideratio	components blanar circuit Matrix N-pc (4H) TE ₁₀ mode ar and group ve Introduction n, resonant f	at millimetre components. ort networks- nalysis, cut-off elocity, power n of circular frequency, Q- ve mentioned
	wave freque (2H) Review of Properties of mm wave W Rectangular frequency, p transmission waveguide; I factor, excita Planar Trans Propagation lines. strip lir	ncies. Realization Transmission line S matrix, Transmi aveguide and Res Waveguide- desig ropagation consta , attenuation, w Rectangular wave tion. (6H) mission lines and characteristics, co	of reactive theory. ssion matri onators n considera nt, intrinsic aveguide e guide resor Resonators mparison f c, coplanary	on and desig elements as Concept of x and their re- tion, TE and wave impec- excitation, v nator design at mm Wav or different waveguide, S	n of Lumped s mm wave p Scattering elationships TM modes, lance, phase vall current; consideratio es characteristic lot line-desig	components planar circuit Matrix N-pc (4H) TE ₁₀ mode an and group ve Introduction n, resonant f cs of the abov gn considerat	at millimetre components. ort networks- nalysis, cut-off elocity, power n of circular frequency, Q- ve mentioned ion, Substrate
	wave freque (2H) Review of Properties of mm wave W Rectangular frequency, pl transmission waveguide; I factor, excita Planar Trans Propagation lines. strip lin integrated w	ncies. Realization Transmission line S matrix, Transmi aveguide and Res Waveguide- desig ropagation consta , attenuation, w Rectangular wave tion. (6H) mission lines and characteristics, co ne, micro-strip line	of reactive theory. ssion matri onators n considera nt, intrinsic aveguide resor Resonators mparison f c, coplanar v iating diele	on and desig elements as Concept of x and their re- tion, TE and wave imped excitation, w hator design at mm Waw or different waveguide, S ctric guides,	n of Lumped s mm wave p Scattering elationships TM modes, lance, phase vall current; consideratio es characteristic lot line-desig Design synth	components planar circuit Matrix N-pc (4H) TE ₁₀ mode an and group ve Introduction n, resonant f cs of the abov gn considerat	at millimetre components. ort networks- nalysis, cut-off elocity, power n of circular frequency, Q- ve mentioned ion, Substrate
	wave freque (2H) Review of Properties of mm wave W Rectangular frequency, p transmission waveguide; I factor, excita Planar Trans Propagation lines. strip lir integrated w Passive Com	ncies. Realization Transmission line S matrix, Transmi aveguide and Res Waveguide- desig ropagation consta , attenuation, w Rectangular wave tion. (6H) mission lines and characteristics, co ne, micro-strip line aveguide, non rad	of reactive theory. ssion matri onators n considera nt, intrinsic aveguide resor Resonators mparison f coplanary iating diele S-matrix R	on and desig elements as Concept of x and their re- tion, TE and wave imped excitation, w hator design at mm Waw or different waveguide, S ctric guides, epresentatio	n of Lumped s mm wave p Scattering elationships TM modes, lance, phase vall current; consideratio es characteristic lot line-desig Design synth on	components planar circuit Matrix N-pc (4H) TE ₁₀ mode ar and group ve Introduction n, resonant i ss of the above gn considerat esis and analy	s at millimetre components. ort networks- nalysis, cut-off elocity, power n of circular frequency, Q- ve mentioned ion, Substrate ysis (6H)
	wave freque (2H) Review of Properties of mm wave W Rectangular frequency, pi transmission waveguide; I factor, excita Planar Trans Propagation lines. strip lir integrated w Passive Com Millimetre w	ncies. Realization Transmission line S matrix, Transmi aveguide and Res Waveguide- desig ropagation consta , attenuation, w Rectangular wave tion. (6H) mission lines and characteristics, co he, micro-strip line aveguide, non rad ponents and their	of reactive theory. ssion matri onators n considera nt, intrinsic aveguide resor Resonators mparison f coplanary iating diele S-matrix R ponents and	on and desig elements as Concept of x and their re- tion, TE and wave imped excitation, v nator design at mm Wav or different waveguide, S ctric guides, epresentatio d their S mat	n of Lumped s mm wave p Scattering elationships TM modes, lance, phase vall current; consideratio es characteristic lot line-desig Design synth on crix represen	components planar circuit Matrix N-pc (4H) TE ₁₀ mode an and group ve Introduction n, resonant f ss of the above sn considerat esis and analy tation: Atten	at millimetre components. ort networks- nalysis, cut-off elocity, power n of circular frequency, Q- ve mentioned ion, Substrate ysis (6H) uators, Phase
	wave freque (2H) Review of Properties of mm wave W Rectangular frequency, p transmission waveguide; I factor, excita Planar Trans Propagation lines. strip lin integrated w Passive Com Millimetre w shifter, Direct	ncies. Realization Transmission line S matrix, Transmi aveguide and Res Waveguide- desig ropagation consta , attenuation, w Rectangular wave tion. (6H) mission lines and characteristics, co ne, micro-strip line aveguide, non rad ponents and their vave passive comp	of reactive theory. ssion matri onators n considera nt, intrinsic aveguide resor Resonators mparison f coplanar v iating diele S-matrix R onents and the-hole co	on and desig elements as Concept of x and their re- tion, TE and wave imped excitation, v hator design at mm Wav or different waveguide, S ctric guides, epresentatio their S mation pupler, magin	n of Lumped s mm wave p Scattering elationships TM modes, lance, phase vall current; consideratio es characteristic lot line-desig Design synth on crix represen c tee, hybrid	components planar circuit Matrix N-pc (4H) TE ₁₀ mode ar and group ve Introduction n, resonant f cs of the above on considerat esis and analy tation: Atten ring, circulat	s at millimetre components. ort networks- nalysis, cut-off elocity, power n of circular frequency, Q- ve mentioned ion, Substrate ysis (6H) uators, Phase cors, Isolators;
	wave freque (2H) Review of Properties of mm wave W Rectangular frequency, pr transmission waveguide; I factor, excita Planar Trans Propagation lines. strip lir integrated w Passive Com Millimetre w shifter, Direct	ncies. Realization Transmission line S matrix, Transmi aveguide and Res Waveguide- desig ropagation consta , attenuation, w Rectangular wave tion. (6H) mission lines and characteristics, co ne, micro-strip line aveguide, non rad ponents and their vave passive comp tional coupler, Be	of reactive theory. ssion matri onators n considera nt, intrinsic aveguide resor Resonators mparison f coplanary iating diele S-matrix R conents and the-hole cors rs and coup	on and desig elements as Concept of x and their re- tion, TE and wave imped excitation, w hator design at mm Waw or different waveguide, S ctric guides, epresentatio d their S mat oupler, magio	n of Lumped s mm wave p Scattering elationships TM modes, lance, phase vall current; consideratio es characteristic lot line-desig Design synth on crix represen t tee, hybrid procedure o	components planar circuit Matrix N-pc (4H) TE ₁₀ mode ar and group ve Introduction n, resonant i cs of the above gn considerat esis and analy tation: Atten ring, circulat f filter using	s at millimetre components. ort networks- nalysis, cut-off elocity, power n of circular frequency, Q- we mentioned ion, Substrate ysis (6H) uators, Phase cors, Isolators; insertion loss
	wave freque (2H) Review of Properties of mm wave W Rectangular frequency, pi transmission waveguide; I factor, excita Planar Trans Propagation lines. strip lin integrated w Passive Com Millimetre w shifter, Direc design of pla method-spec (8H)	ncies. Realization Transmission line S matrix, Transmi aveguide and Res Waveguide- desig ropagation consta , attenuation, w Rectangular wave tion. (6H) mission lines and characteristics, co ne, micro-strip line aveguide, non rad ponents and their vave passive comp tional coupler, Be inar power divide cification, low-pas	of reactive theory. ssion matri onators n considera nt, intrinsic aveguide e guide resor Resonators mparison f c, coplanary iating diele S-matrix R ponents and the-hole cor s prototype	on and desig elements as Concept of x and their re- tion, TE and wave imped excitation, w hator design at mm Waw or different waveguide, S ctric guides, epresentatio their S mat pupler, magic blers; design, sca	s nof Lumped s mm wave p Scattering elationships TM modes, lance, phase vall current; consideratio es characteristic lot line-desig Design synth on trix represen tee, hybrid procedure o aling and con	components planar circuit Matrix N-pc (4H) TE ₁₀ mode ar and group ve Introduction n, resonant i cs of the above gn considerat esis and analy tation: Atten ring, circulat f filter using	s at millimetre components. ort networks- nalysis, cut-off elocity, power n of circular frequency, Q- ve mentioned ion, Substrate ysis (6H) uators, Phase cors, Isolators; insertion loss
	wave freque (2H) Review of Properties of mm wave W Rectangular frequency, pr transmission waveguide; H factor, excita Planar Trans Propagation lines. strip lir integrated w Passive Com Millimetre w shifter, Direct design of pla method-spect (8H) mm wave de	ncies. Realization Transmission line S matrix, Transmi aveguide and Res Waveguide- desig ropagation consta , attenuation, w Rectangular wave tion. (6H) mission lines and characteristics, co ne, micro-strip line aveguide, non rad ponents and their vave passive comp tional coupler, Be inar power divide cification, low-pas	of reactive theory. ssion matri onators n considera nt, intrinsic aveguide resor Resonators mparison f c, coplanary iating diele S-matrix R conents and the-hole cors and coup s prototype tion to swit	on and desig elements as Concept of x and their re- tion, TE and wave imped excitation, w hator design at mm Waw or different waveguide, S ctric guides, epresentatio d their S mation bupler, magio blers; design, sca cches and mi	s nof Lumped s mm wave p Scattering elationships TM modes, lance, phase vall current; consideratio es characteristic lot line-desig Design synth- on trix represen tee, hybrid procedure o aling and con xers	components planar circuit Matrix N-po (4H) TE ₁₀ mode ar and group ve Introduction n, resonant f es of the above on considerat esis and analy tation: Atten ring, circulat f filter using nversion, imp	at millimetre components. ort networks- nalysis, cut-off elocity, power n of circular frequency, Q- ve mentioned ion, Substrate ysis (6H) uators, Phase cors, Isolators; insertion loss plementation.
	wave freque (2H) Review of Properties of mm wave W Rectangular frequency, p transmission waveguide; H factor, excita Planar Trans Propagation lines. strip lir integrated w Passive Com Millimetre w shifter, Direc design of pla method-spec (8H) mm wave de TED (Gunn	ncies. Realization Transmission line S matrix, Transmi aveguide and Res Waveguide- desig ropagation consta , attenuation, w Rectangular waveg tion. (6H) mission lines and characteristics, con the, micro-strip line aveguide, non rad ponents and their vave passive comp tional coupler, Be mar power divide chiration, low-pas vices and Applica diode) & Avalan	of reactive theory. ssion matri onators n considera nt, intrinsic aveguide resor Resonators mparison f coplanary iating diele S-matrix R onents and the-hole co rs and coup s prototype tion to swit che Transit	on and designed elements as Concept of x and their re- tion, TE and wave imped excitation, what or different of waveguide, S ctric guides, epresentation their S mate objers; design e design, sca cches and mi t Time (IMF	s mm wave p Scattering elationships TM modes, lance, phase vall current; consideratio tot line-desig Design synth on trix represen tee, hybrid procedure o aling and con xers PATT) device	components planar circuit Matrix N-pc (4H) TE ₁₀ mode ar and group ve Introduction n, resonant i ss of the above gn considerat esis and analy tation: Atten ring, circulat f filter using nversion, imp	s at millimetre components. ort networks- nalysis, cut-off elocity, power n of circular frequency, Q- we mentioned ion, Substrate ysis (6H) uators, Phase cors, Isolators; insertion loss plementation.
	wave freque (2H) Review of Properties of mm wave W Rectangular frequency, pi transmission waveguide; I factor, excita Planar Trans Propagation lines. strip lin integrated w Passive Com Millimetre w shifter, Direc design of pla method-spec (8H) mm wave de TED (Gunn applications;	ncies. Realization Transmission line S matrix, Transmi aveguide and Res Waveguide- desig ropagation consta , attenuation, w Rectangular waveg tion. (6H) mission lines and characteristics, con the, micro-strip line aveguide, non rad ponents and their vave passive comp tional coupler, Be inar power divide cification, low-pas evices and Applica diode) & Avalan Microwave bipola	of reactive theory. ssion matri onators n considera nt, intrinsic aveguide resor Resonators mparison f coplanary iating diele S-matrix R onents and othe-hole co rs and coup s prototype tion to swill che Transit ar transistor	on and designed elements as Concept of x and their re- tion, TE and wave imped excitation, ver ator design at mm Wave or different of waveguide, S ctric guides, epresentation d their S mation blers; design e design, sca ches and mi t Time (IMF , Microwave	s mm wave p Scattering elationships TM modes, lance, phase vall current; consideratio tot line-desig Design synth on trix represen tee, hybrid procedure o aling and con xers PATT) device	components planar circuit Matrix N-pc (4H) TE ₁₀ mode ar and group ve Introduction n, resonant i ss of the above gn considerat esis and analy tation: Atten ring, circulat f filter using nversion, imp	s at millimetre components. ort networks- nalysis, cut-off elocity, power n of circular frequency, Q- we mentioned ion, Substrate ysis (6H) uators, Phase cors, Isolators; insertion loss plementation.
	wave freque (2H) Review of Properties of mm wave W Rectangular frequency, pt transmission waveguide; I factor, excita Planar Trans Propagation lines. strip lir integrated w Passive Com Millimetre w shifter, Direct design of pla method-spect (8H) mm wave de TED (Gunn applications; Microwave A	ncies. Realization Transmission line S matrix, Transmi aveguide and Res Waveguide- desig ropagation consta , attenuation, w Rectangular waveg tion. (6H) mission lines and characteristics, con the, micro-strip line aveguide, non rad ponents and their vave passive comp tional coupler, Be mar power divide chiration, low-pas vices and Applica diode) & Avalan	of reactive theory. ssion matri onators n considera nt, intrinsic aveguide resor Resonators mparison fill conlanar vi iating diele S-matrix R conents and onents and onents and the-hole corrs and coup s prototype tion to switt che Transitor t mm Wave	on and desig elements as Concept of x and their re- tion, TE and wave imped excitation, w hator design at mm Waw or different waveguide, S ctric guides, epresentatio d their S mate oupler, magio elers; design e design, sca cches and mi t Time (IMF c, Microwave es	s nof Lumped s mm wave p Scattering elationships TM modes, lance, phase vall current; consideratio es characteristic lot line-desig Design synth- on crix represen tee, hybrid procedure o aling and con xers PATT) device field effect t	components planar circuit Matrix N-pc (4H) TE ₁₀ mode ar and group ve Introduction n, resonant in the so of the above on considerat esis and analy tation: Atten ring, circulat f filter using nversion, imp , Schottky of ransistor. (6 H	at millimetre components. ort networks- nalysis, cut-off elocity, power n of circular frequency, Q- we mentioned ion, Substrate ysis (6H) uators, Phase cors, Isolators; insertion loss plementation. diode, PIN & 1)

	matching network, noise figure; matching network design using lumped elements and L- Section. Design of LNA. (6H) mm wave measurement basics
	VSWR meter, tunable detector, slotted line and probe detector, spectrum analyzer, network analyzer, measurement of VSWR – low, medium and high, measurement of power: low, medium and high, frequency measurement.(4H)
Text	Text Books:
Books,	[1] David. M. Pozar, <i>Microwave Engineering</i> , 2/e, 1998 (John Wiley & Sons).
and/or reference material	[2] DrDuixian Liu, Mr Brian Gaucher, Dr Ulrich Pfeiffer, DrJanuszGrzyb, Advanced Millimeter-Wave Technologies: Antennas, Packaging and Circuits, 2009 John Wiley & Sons, Ltd
	[3] G H Bryant, <i>Principles of microwave Measurement</i> , London : P. Peregrinus Ltd. on behalf of the Institution of Electrical Engineers, c1988
	Reference Books:
	[1] P A Rizzi, Microwave Engineering: Passive Circuits, 2000, PHI
	[2] R E Collin, Foundations of Microwave Engineering, John Wiley and Sons India Pvt. Ltd.
	[4] Noël Deferm Patrick Reynaert, CMOS Front Ends for Millimeter Wave Wireless Communication Systems, Springer International Publishing Switzerland 2015

Mappin	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO CO	PO #1	PO #2	PO #3	РО #4	PO #5	PO #6	PO #7	PO #8	PO #9	PO #10	PO #11	PO #12	PSO #1	PSO #2	PSO #3
CO#1	2	1	2	1	2	2	1	1	1	1	1	1	2	1	1
CO#2	3	2	2	2	2	2	1	1	1	2	1	1	2	1	1
CO#3	3	3	3	1	1	2	1	1	2	2	1	1	3	3	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

	Departme	nt of Electronics and	nd Communication Engineering								
Course		Program Core	Total N	lumber of c	ontact hours	= 42					
Code	Title of the course	(PCR) / Elective	Lecture	Tutorial	Practical	Total	Credit				
coue		(PEL)	(L)	(T)	(P)	Hours					
ECE717	RFID Technology and Applications	PEL	3	0	0	3	3				
Pre-requisit	tes	Course Assessme	nt method	ls: (Continu	ious Assessi	ment (CA	.), Mid-				
		semester assessr	nent (MA)	and End As	ssessment (EA)):					
Signals and	Systems	Assignments, Quiz/class test, Mid-semester Examination and End									
(ECC303)		Semester Examination									
Analog Con	nmunication										
(ECC401)											
Digital Com	munication (ECC501)										
Microwave	Engineering										
(ECC502)											
Analog IC D	esign										
(ECE712)											

Course	CO#1 Ability to understand the basic knowledge of the radio frequency identification
Outcomes	technology.
outcomes	CO#2 Ability to analyze, explain and resolve technical problems related to RFID technology
	for skills.
	CO#3 Develop an ability to forming, planning, deployment, operation, and evaluation
	systems using RFID technology and complete real models.
Topics	Components Of RFID Systems And Performance Metrics : Classification of RFID systems
Covered/	available, commercial specifications[L-6]
Syllabus	RFID Antenna and Tag Chip Design :Design variants, developing matching elements,
-,	installation, environment [L-6]
	Design of passive RFID tag: Passive RFID Operation; Passive RFID Reader Design [L-6]
	RFID Middleware : Concepts and Architecture, Data Management and Application-Level
	Events [L-6]
	TAG identification protocols, Tree-Based Anti-Collision Protocols for RFID
	Tags, Comparison of TTF and RTF UHF RFID Protocols, Techniques of RFID Positioning[L-6]
	Reader Infrastructure Networking, Integrating RFID Readers in Enterprise IT, reducing
	interference in networks, Optimal Tag Coverage and Tag Report Elimination, Secure and
	Privacy-Enhanced RFID Systems, Cryptographic Approaches for Improving Security and
	Privacy Issues of RFID Systems [L-6]
	Energy Harvesting for Self-Powered Autonomous RFID Systems, Tag Architecture Based
	on Energy Harvesting, Simulators and Emulators for Different Abstraction Layers of UHF
	RFID Systems [L-6]
Text Books,	Text Books:
and/or	[1] R Ludwig and P Bretchko, <i>RF Circuit Design: Theory and Application</i> , Pearson
Reference	Education, New Delhi
material	[2] Miles S,SarmaS,Wiiams J., (Eds.) (2008),RFID Technology and Applications,
	Cambridge: Cambridge University Press. Doi: 10.1017/CBO9780511541155
	Reference Book:
	[1] M. Bolic, D. Simplot-Ryl, I. Stojmenovic (Editors), RFID Systems: Research Trends and
	Challenges, John Wiley and Sons, 2010.

Марр	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO CO	PO #1	PO #2	РО #3	PO# 4	PO #5	PO #6	PO #7	PO #8	PO #9	PO #10	PO #11	PO #12	PSO# 1	PSO#2	PSO# 3
CO#1	2	1	2	1	2	2	1	1	1	1	1	1	2	1	1
CO#2	3	2	2	2	2	2	1	1	1	2	1	1	2	1	1
CO#3	3	3	3	1	1	2	1	1	2	2	1	1	3	3	2

Correlation levels 1, 2 or 3 as defined below:

	Departr	ment of Electronics			-							
	Title of the	Program Core			ontact hours							
Course Code	course	(PCR) / Elective	Lecture	Tutorial	Practical	Total	Credit					
	course	(PEL)	(L)	(T)	(P)	Hours						
ECE718	VLSI System	PEL	3	0	0	3	3					
	Design											
Pre-requisites					ethods: (Con							
					Assessment	(MA:25%)	and End					
				essment (EA:								
VLSI Design (EC	C602)		Continuou		•	A): Qui	zzes/Clas					
				gnments/Att								
Course		etion of the cours										
Outcomes	• CO 1:	Understand the fu			-							
	• CO 2:	Learn about station	-	•	-	nts.						
	• CO 3:	Understand the d	-	•								
	• CO 4:	Identify and inter		-	-	-						
	• CO 5:	Design and analys	•	rmance (spe	ed, power) c	of VLSI circ	uits and					
	-	rent specifications										
	• CO 6:	Evaluate and desi	-	-								
Topics	Module I.	Overview of VLSI	•	• • •								
Covered		sign methodologie		-			-					
		in the industry: Sy			-	on of VLSI	Systems					
	basic concepts.	Deep Sub-micron	Technologie	es: Some Des	sign Issues.							
	Module II.	Full Custom Flow	[L – 6]									
	Block specificat	ion, schematic des	ign entry, n	etlist genera	ation and sim	ulation, si	mulatio					
	for process and	operating corners	s, layout wit	th DRC/ LVS	clean, parasi	tic extract	ion for I					
	& C, back anr	notation & simula	ation, simu	lation redor	ne with par	asitic info	rmatior					
	Concepts of PC	ELL.										
	Module III.	Constraints and S	tatic Timin	g Analysis[L	- 8]							
	Basic tenets of	synchronous stati	c timing: se	tup & hold	timing, mult	ipath & fa	lse path					
	clock skew & la	atency, Asynchron	ous and syi	nchronous c	locks, crossir	ng clock d	omains					
	clock gating; D	esign constraints	for a desi	ign in SDC	format: des	ign objec	ts, timir					
	constraints, environmental constraints, case analysis; timing report, synchronous static											
	timing.											
	Module IV. Semiconductor Memories[L – 8]											
	Memory hierarchy and types; SRAM Cell optimization and design metrics, memory read											
	and write path	; DRAM array des	ign and rel	ated constra	aints, DRAM	interface	addres					
	decoding, pipe	lining, data inter	face, charg	e pumps; r	on-volatile	memory	cell-basi					
	principle and	operation, reliabil	ity conside	rations of	NVM; Case	study- hi	gh-spee					
	memory, low vo	•	,			•	0 1					
	Module V.	Design for Testab	ility[L – 8]									
		DFT, DFT director		DFT rule che	ecker, debug	ging and f	ixing DF					
		Mapping, Scan										
		estability logic, ATF										
	Module VI. Flow for Designing Full SoC [L – 5]											
	Block specification, schematic design entry, netlist generation and simulation, simulation for process and operating corpers, layout with DBC/LVS clean, parasitic extraction for B											
	for process and operating corners, layout with DRC/ LVS clean, parasitic extraction for R											
	& C, back annotation & simulation, simulation redone with parasitic information,											
	concepts of PCELL.											
	Module VII. Physical Design [L – 5]											
	Floorplanning and placement, clock tree insertion & DFT insertion, routing, post											

	PnRfunction & timing checks, interconnection architectures.
Text Books,	Text Books:
and/or	1. N. H. E. Weste and C. Harris, "Principles of CMOS VLSI Design: A System
Reference	Perspective", 3rd Edition, Pearson Education 2007.
Material	2. Jan M. Rabaey, AnanthaChandrakasan, BorivojeNikolic, "Digital Integrated
	Circuits: A Design Perspective", Second Edition, Pearson Education, 2016.
	Reference Books:
	1. Michael L. Bushnell, Vishwani D. Agrawal, "Essentials of Electronic Testing for
	Digital, Memory and Mixed-Signal VLSI Circuits", Kluwer Academic Publishers 2002.
	2. Sung-Mo Kang, Yusuf Leblebici, "CMOS Digital Integrated Circuits", 3rd edition,
	Tata McGraw-Hill, 2003.

Mappi	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO CO	PO #1	PO #2	PO #3	РО #4	PO #5	PO #6	PO #7	PO #8	PO #9	PO #10	PO #11	PO #12	PSO #1	PSO #2	PSO #3
CO#1	3	3	3	2	1	2	1	1	1	1	1	1	3	3	2
CO#2	3	2	2	2	1	2	1	1	1	1	1	1	3	2	1
CO#3	3	3	2	3	1	1	1	1	1	1	1	1	3	2	2
CO#4	3	2	3	2	1	1	1	1	1	1	1	1	3	3	2
CO#5	3	3	2	3	1	1	1	1	1	1	1	1	3	2	2
CO#6	3	2	2	2	1	2	1	1	1	1	1	1	3	2	1

Correlation levels 1, 2 or 3 as defined below:

	Department	of Electronics and	l Communio	cation Engine	ering							
Course	Title of the course	Program Core	Total	Number of co	ontact hours	= 42	Credit					
Code		(PCR) /	Lecture	Tutorial	Practical	Total						
		Elective (PEL)	(L)	(T)	(P)	Hours						
ECE719	Telecommunication	PEL	3	0	0	3	3					
	Networks											
Pre-requisi	tes	Course Assessment methods										
		(Continuous (C	T), mid-tern	n (MT) and e	nd assessme	nt (EA))						
Analog Com	munication (ECC401),	CT+MT+EA										
Digital Com	munication (ECC501)											
Course	CO#1: Learn about v	various types of r	networks ap	opropriate fo	or pre specifi	ed applica	tions and					
Outcomes	operational scenaric	os.										
	CO#2: Explain the in	formation flow th	rough varic	ous subsyster	ns of a netwo	ork.						
	CO#3: Understand	the current te	chnology	trends and	business p	otential o	of future					
	telecommunication	networking parac	ligms.									
Topics	Elements of telecom	munication netw	ork. (2L)									
Covered	Computer networks	. (8L)										
		Landline telephone networks. (8L)										
	Cellular mobile netw	ellular mobile networks. (8L)										
	Optical networks. (8	-										
	Satellite networks. (8L)										

Text Books,	Text Book:
and/or	1. Communication Networks – J. Walrand.
reference	Reference Books:
material	1. Telecommunication Switching and Networks - P. Gnanasivam.
	2. Optical and Wireless Communications – M. N.O. Sadiku.

COURSE ARTICULATION MATRIX

Mappi	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO CO	PO #1	PO #2	PO #3	PO #4	PO #5	PO #6	PO #7	PO #8	PO #9	PO #10	PO #11	PO #12	PSO #1	PSO #2	PSO #3
0	#1	#2	#3	#4	#5	#0	#/	#0	#9	#10	#11	#12	#1	#Z	#5
CO#1	3	2	1	2	1	2	1	1	1	1	1	1	3	3	1
CO#2	3	2	3	1	1	1	1	1	1	1	1	1	3	3	1
CO#3	1	1	2	3	1	3	3	2	1	2	3	2	3	3	3

Correlation levels 1, 2 or 3 as defined below:

. Slight (LOW)				insrailitiai (Lib	1						
	Depar	tment of Elect	ronics and Co	mmunication	Engineering						
Course	Title of the	Program	Tota	al Number of d	contact hours	= 42	Credit				
Code	course	Core (PCR)	Lecture	Lecture	Lecture	Lecture					
		/ Elective	(L)	(L)	(L)	(L)					
		(PEL)									
ECE720	Advanced	PEL	3	0	0	3	3				
	Semiconductor										
	Devices										
Pre-requisit	es	Course Assessment methods									
		(Continuous	; (CT), mid-ter	m (MT) and ei	nd assessmen	t (EA))					
	emiconductor	CT+MT+EA									
Devices (PH											
Course		and state of th	ne art in semio	onductor dev	ice physics an	d electronic p	roperties of				
Outcomes	semiconduc				_						
	 CO2 Acquire in depthknowledge of advanced field effect transistors and its applications CO3 Develop understanding about basic working principles of quantum well devices and 										
			•	working prine	ciples of quan	tum well devi	ces and				
		on device sim	ulations								
Topics	Module I: (L – 10	•									
Covered	Electronic proper		•			•	•				
	semiconductors;		erojunction bi	ipolar Transist	or (HBT) Dev	ices: SiGe, Ga	As, INP, Gai				
	Module II: (L – 1	•	a. Hatarastru	atura Field F	ffoot Tropoist		Madulation				
	Advanced Field Doped Field Effect					• • •					
	Module III: (L – 4		10001 213), 111	gilliection							
	Resonant Tunnel		TDs): Single Fl	octron Transis	tors (SETs)						
	Module IV: (L –1	•	1D3), Single Li		(3213)						
	•	-	and quantum	n well devic	es: RF & di	igital applicat	ions: Noise				
	Strained layer superlattices and quantum well devices; RF & digital applications; Noise Characteristics										
	Module V: (L-8)									
	HBT Modelling; H	-	device simula	ition							
Text		1. Theory of Modern Electronic Semiconductor Devices, Kevin F. Brennan, April S. Brown,									
Books,		n Wiley & Son			,		,				
,		,	-,								

and/or	2. Physics of Semiconductor Devices, S.M. Sze, Wiley, 1981
reference	3. GaAs High-Speed Devices: Physics, Technology, and Circuit Applications, C.Y. Chang, F. Kai,
material	Wiley, 1994
	4. Device Electronics for Integrated Circuits, R. S. Muller & T. I. Kamins, Wiley, 2003
	5. Silicon VLSI technology: fundamentals, practice and modelling, J. D. Plummer, M. D. Deal,
	P. B. Griffin, Pearson Education, 2009

COURSE ARTICULATION MATRIX

Mappin	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO CO	PO #1	PO #2	PO #3	РО #4	PO #5	PO #6	PO #7	PO #8	PO #9	PO #10	PO #11	PO #12	PSO #1	PSO #2	PSO #3
CO#1	3	3	3	2	-	-	-	-	-	-	-	2	3	2	2
CO#2	2	2	3	2	3	-	1	-	-	-	1	3	2	2	3
CO#3	2	2	3	2	1	-	-	-	-	-	-	2	2	2	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

Department of Electronics and Communication Engineering Course Title of the Program Core Total Number of contact hours = 42 Credit											
Course	Title of the	Program Core	Tota	l Number of	contact hour	rs = 42	Credit				
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total					
		Elective (PEL)	(L)	(T)	(P)	Hours					
ECE721	Random	PEL	3	0	0	3	3				
	Process										
Pre-requisit	es	Course Assessm	nent metho	ds							
		(Continuous (C	Г), Mid-Terr	m (MT),End A	ssessment (E	EA))					
NIL		CT+MT+EA									
Course	Course • CO1: Characterize probability models and function of random variables.										
Outcomes	Outcomes • CO2: Evaluate and apply moments & characteristic functions and understand the										
	concept of inequalities and probabilistic limits.										
	• CC	03: Recognize,	interpret	and apply	a variety	of deter	ministic and				
	no	ndeterministic ra	ndom proce	esses that oc	cur in engine	ering.					
	• CC	04: Calculate the a	autocorrela	tion and spe	ctral density	of a random	n process and				
	ree	cognize the relation	on beteen t	hem.							
Topics		roduction: Basic o		•							
Covered		ndom Variables:					an, Variance,				
		oments, Characte				. ,					
		o random variab		ensity and d	istribution fu	unction, Two	functions of				
		o random variable	. ,								
		ationary random	-	s, Autocorr	elation fund	ction, Cross	s correlation				
		nction, Covariance		. (21)							
		near systems with									
		arkov Processes, N			. ,	(51)					
	13. PO	isson process, Poi	ssson distri	bution, Gaus	sian process	(5L)					

Text	Books,	Te	Fext Books:												
and/	′or		5. A	А. Роро	ulis, U.	Pillai, I	Probab	ility, ra	ndom v	variable	es and s	stochas	tic proce	sses, Ta	ata
refe	rence		ſ	McGrav	cGraw-Hill Inc., 4 th Ed., New Delhi, 2017										
mate	erial		6. F	P. Peeb	Peebles, Probability, random variables and random signal priniciples, McGraw-										
			ŀ	Hill Inc.	Inc., 4 th Ed., New York, USA, 2001										
			7. (C. W. Tł	nerrien	, M. Tu	mmala	, Proba	bilty ar	nd rana	lom pro	ocesses	for elect	rical and	1
			C	comput	er engi	neers, 2	2 nd Ed.,	CRC pr	ess, pr	inted ir	n India,	2012			
		Re	eferend	nce Books:											
			3. (George	R. Coo	per, C.	D. McG	Gillem, I	Probab	ilistic n	nethods	s of sigi	nal analy	sis and	
			5	system	analysi	s, Oxfo	rd Univ	ersity l	Press, 3	B rd Ed. ,	New D	elhi, 20	007		
			4. <i>A</i>	Alberto	Leon-C	Garcia,	Probab	ility an	d rando	om pro	cesses j	for elec	trical en	gineering	g,
			F	Pearsor	n Educa	tion Ind	c., 2 nd E	d., 200)7						
COURSE A	ARTICUL	ATION	DN MATRIX												
Марр	oing the	e Cours	urse Outcome (CO) to Programme Outcome (PO) and Programme Specific Outcome (PSO)												
PO/PSO	РО	РО	PO PSO PS												
	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
СО															
CO#1	3	3	2	2	1	1	1	-	1	1	2	3	3	1	2

-

-

-

-

-

-

1

-

-

1

-

-

1

1

1

3

3

3

2

2

1

2

1

2

CO#4 3 2 3 3 2 Correlation levels 1, 2 or 3 as defined below:

2

2

2

2

CO#2

CO#3

3

3

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

2

3

2

2

-

-

-

_

-

-

	Departme	ent of Electronics and	d Communio	cation Engine	ering							
Course	Title of the course	Program Core	Total	Number of co	ontact hours	= 46	Credit					
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total						
		(PEL)	(L)	(T)	(P)	Hours						
ECE722	Microwave Circuits and Techniques	PEL	PEL 3 0 0 3 3									
Pre-requisi	ites	Course Assessment methods										
		(Continuous (CT),	Mid-Term (MT) and End	Assessment	(EA))						
Microwave (ECC502)	e Engineering	CT+MT+EA										
Course Outcomes	frequenc • CO#2 The reasoning • CO#3 The	 CO#1 Students will be able to learn the intricacies of design constraints at high frequency. CO#2The students can design and synthesize planar circuits and can provide reasoning for the obtained results. CO#3 The basic training for understanding planar passive and active circuit design at microwave frequencies for defense and space applications would be enriched. 										
Topics Covered	Introduction: RF & Microwave Spectrum, Typical applications of RF and Microwave, Safety considerations. [L-2] Review of Transmission line theory. Concept of Scattering Matrix; Smith Chart [L-2] Microwave Waveguide and Waveguide Resonator [L-6] Rectangular Waveguide- Design consideration, TE & TM modes, TE10 mode analysis, cut-off frequency, propagation constant, intrinsic wave impedance, phase and group											
velocity, power transmission,attenuation, waveguide excitation, wall current; Introduction of circular waveguide; Rectangular waveguide resonator- Design												

	consideration, resonant frequency, Q-factor, excitation.
	Planar Transmission Line [L-4]
	Propagation characteristics, Comparison for different characteristics of the above mentioned lines. Micro-strip lines, Coplanar waveguide, Slot line-design consideration, field patterns.
	High frequency Circuit Elements [L-6]
	Difference in High frequency and relatively low frequency behaviour of Lumped circuit components. Miniaturization and Design of Lumped components at High RF. Realization of reactive elements as Waveguide and Planar Circuit components.
	Planar Passive Components and their S-matrix Representation [L-8]
	N-port networks-Properties of S matrix, Transmission matrix & their relationships; Microwave passive components and their S matrix representation: Attenuators, Phase shifter, Power dividers, couplers, impedance matching elements as well as filters.
	Semiconductor Microwave Devices and Circuits [L-6]
	TED (Gunn diode) & Avalanche Transit Time (IMPATT) device, Schottky diode, PIN & applications; Microwave bipolar transistor, Microwave field effect transistor (MESFET).
	Microwave Amplifier Design [L-6]
	Basic consideration in the design of RF amplifier- Transistor S-parameter, Stability, matching network, noise figure; Matching network design using lumped elements and L-Section. Design of LNA.
	Microwave Circuit Measurement [L-6]
	VSWR meter, Tunable detector, Slotted line and Probe detector, Frequency meter, Network analyzer, Measurement of VSWR – low, medium and high, Measurement of power: low, medium and high, Frequency measurement.
Text Books,	Text Books:
and/or reference	[1] High Frequency integrated Circuits, SorinVoinigescu, Cambridge University Press, No Delhi 2013
material	[2] Microwave Engineering D M Pozar, John Wiley and Sons, New Delhi
	Reference Books
	[1] Microwave Integrated circuit, K. C. Gupta.
	 [2] Microwave Devices & Circuits 3/e, Samuel Y. Liao. [3] Microstrip lines and Slot lines, K.C. Gupta, R. Garg., I. Bahl, P. Bhartia, Artech House,
	Boston, 1996.

Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)

134 | Page

PO/PSO CO	PO #1	PO# 2	PO #3	РО #4	PO #5	PO #6	PO #7	PO #8	PO #9	PO #10	PO# 11	PO #12	PSO# 1	PSO# 2	PSO# 3
CO#1	2	1	2	1	2	2	1	1	1	1	1	1	2	1	1
CO#2	3	2	2	2	2	2	1	1	1	2	1	1	2	1	1
CO#3	3	3	3	1	1	2	1	1	2	2	1	1	3	3	2

Correlation levels 1, 2 or 3 as defined below:

ght (Low)	2: Moderate (N	•	Substantial									
		t of Electronics and (
Course	Title of the course	Program Core	Total N	Number of c	contact hours	5 = 42	Cred					
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total						
		(PEL)	(L)	(T)	(P)	Hours						
ECE723	Semiconductor	PEL	3	0	0	3	3					
	Device Modeling											
Pre-requisi	ites	Course Assessmer	nt methods									
		(Continuous (CT), mid-term (MT) and end assessment (EA))										
Physics of	Semiconductor	CT+MT+EA										
Devices (P	HC331),											
	Devices and Circuits I											
(ECC302)												
Course		e the essential prope										
Outcomes	-	e the carrier conce	ntration as	a function	of tempera	ature, dop	oing ar					
	illumination conc											
		and the transport of	f charge cai	rriers for th	e operation	of semico	onduct					
	devices.											
			e physical model of P-N junctions. the charge, electric field, potential and current distributions in the MOS									
		the charge, electric	field, poter	ntial and cu	irrent distrib	utions in t	he M					
	devices			<u> </u>								
		the fundamental un	derstanding	g of device r	nodeling							
Topics	Module 1				,	[6L]						
Covered		Fundamentals: Equi										
		Effective Mass, Ban	• • • •	t velocity, N	viobility and	Scattering	, Drift					
	Module 2	, Continuity equatio	11.			[8L]						
		uctor and PN Junction	on: Motal C	Comiconduc	tor junction							
		Surface Effect, Ideal			•							
		tion Capacitances	static prije			, DIOUE L	quatio					
	Module 3	tion capacitances				[6L]						
		Modes of operation	n (accumula	ation denle	etion strong							
	(poly depletion, s	sus voltage (High ad Low Frequency), Flat Band Voltage, Nonideal effect surface charges).										
	Module 4	0				[6L]						
		OSFET Devices: Revie	w of operat	tion. Thresh	old Voltage							
	Module5			-	[8]							
		10SFET Devices: Sca	ling effects	s (short cha	-	-	effect					
		drain induced barrier lowering), Channel velocity limitations (saturation velocity, interface										
		scattering, mobility models). Subthreshold current, Hot carrier effects (impact ionization,										
		•			rier effects (impact io						

	effects)[5L]Module 6[5L]Advanced Devices: SOI, SiGe, strained Si, Alternative oxide/gate materials, Alternative geometries (raised source/drain, dual gate, vertical, FinFET), Tunnel FETs, Memory Devices (DRAM, Flash)Module 7:[3L]Introduction to BSIM Model: BSIM family of Compact device models, BSIM6 model
Text Books, and/or	 B. G. Streetman and S. Banerjee, Solid State Electronic Devices, S. M. Sze, Physics of Semiconductor Devices
reference	3. S. M. Sze, Semiconductor Devices: Physics and Technology
material	4. Michael Shur, Physics of Semiconductor Devices,
	5. NanditaDasGupta and AmitavaDasGupta, Semiconductor Devices,
	6. C. T. Sah, Fundamentals of Solid State Electronics

Mapping CO (Course outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)

PO/PSO	PO	PO	PO	PSO#	PSO	PSO									
СО	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	1	#2	#3
CO#1	2	1	1	1	1	1	1	1	1	1	1	2	3	2	1
CO#2	2	2	1	1	1	1	1	1	1	2	1	2	3	2	2
CO#3	2	3	2	2	2	1	1	1	1	2	1	2	3	2	2
CO#4	3	3	3	2	1	1	1	1	1	2	1	2	3	3	2
CO#5	3	3	3	З	3	1	1	1	1	2	1	3	3	3	3
CO#6	3	3	3	2	3	2	1	1	2	2	2	3	3	З	3

Correlation levels 1, 2 or 3 as defined below:

Department of Electronics and Communication Engineering											
Course	Title of the course	Program Core	Total N	lumber of c	ontact hours	5 = 42	Credit				
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total					
		(PEL)	(L)	(T)	(P)	Hours					
ECE724	Biomedical	PEL	3	0	0	3	3				
	Instrumentation										
Pre-requis	ites	Course Assessmer	nt methods	: (Continuo	us Assessme	nt (CA), N	lid-				
		semester assessm	ent (MA) a	nd End Asse	essment (EA))					
Basic Electr	ronics (ECC01),	Assignments, Quiz	z/class test,	Mid-semes	ster Examina	tion and E	ind				
Engineering	g Mechanics (XEC01)	Semester Examination									
Course	After the completion of the course the student will be able to										
Outcomes	• CO 1: Underst	CO 1: Understand concept of Biomedical Instrumentation									
	CO 2: Underst	and basic building b	locks of Bio	medical Ins	struments						
	• CO 3: Apply qu	antitative analysis	techniques	to Biomedi	cal Instrume	nts					
	• CO 4: Learn de	sign techniques of	Biomedical	Instrument	S						
	CO 5: Investigation	ate application spec	ific Biomed	dical Instrur	nents						
Topics	Module I: Introd	uction to Biomedic	al Measure	ments and	Instrumenta	ition [L-1]				
Covered											
	Module II: Static and dynamic characteristics of Biomedical Instruments [L-7]										
	Static characteristics of elements, Dynamic characteristics of elements, Quasi- static										
	characteristics of e	ements, Static char	acteristics of	of systems,	Dynamic cha	racteristi	cs of				
6 Page											

systems, linearity, non-linearity, Sensitivity, Resolution, Repeatability, Reproducibility, Response time, Settling time, Gain, bandwidth Module III: Error and Noise in Biomedical Measurements [L-4] Sources of noise in measurement systems, mathematical modelling of noise, environmental effects, Effects of Interfering and Modifying inputs, Error analysis, Systematic error, Random error. Statistical methods for noise and error analysis and Modelling. Module IV: Reliability analysis of Biomedical Instruments [L-4] Concept of Reliability, Reliability of measurement systems, Reliability enhancement strategies Module V: Operation of Physiological organs, Bioelectric Potentials and Electrodes [L-7] Operation of Physiological organs, Operation of Nerves system, Operation of heart, Operation of Physiological organs, Operation of Nerves of bioelectric potentials, Bioelectric electrodes Module VI: Building blocks of Biomedical Instruments [L-9] Bioelectric electrodes Module VI: Suiling blocks of Biomedical Instruments [L-10] Clinical thermometer, Sphygmomanometer, Digital Statoscope, ECG signal measuring instrument, EEG signal measuring instrument, Medical Imaging techniques, Assistive Respiratory system Text Books, and/or 1. John G. Webster, Medical Instrumentation Application and Design, 4ed, Wiley, 2015 2. J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition, 2002 3. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education; 2014		
Module III: Error and Noise in Biomedical Measurements[L-4]Sources of noise in measurement systems, mathematical modelling of noise, environmental effects, Effects of Interfering and Modifying inputs, Error analysis, Systematic error, Random error. Statistical methods for noise and error analysis and Modelling.Module IV: Reliability analysis of Biomedical Instruments [L-4] Concept of Reliability, Reliability of measurement systems, Reliability enhancement strategies[L-7] Operation of Physiological organs, Bioelectric Potentials and Electrodes [L-7] Operation of Physiological organs, Operation of Nerves system, Operation of heart, Operation of lungs, Operation of Muscular system, Sources of bioelectric potentials, Bioelectric electrodesModule VI: Building blocks of Biomedical Instruments [L-9] Bioelectric sensors, Sensors, Signal conditioning circuits, Bridge circuits, Amplifiers, Filters, Oscillators, ADC, Signal Processing Units, Microcontrollers, Data Presentation elementsText Books, and/or reference material1. John G. Webster, Medical Instruments [L-10] Clinical thermometer, Sphygmomanometer, Digital Statoscope, ECG signal measuring instrument, EEG signal measuring instrument, Medical Imaging techniques, Assistive Respiratory systemText Books, and/or anterial1. John G. Webster, Medical Instrumentation Application and Design, 4ed, Wiley, 2015 2. J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition, 20023. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education; 2014Reference Material: 1. Research Articles		systems, linearity, non-linearity, Sensitivity, Resolution, Repeatability, Reproducibility,
Sources of noise in measurement systems, mathematical modelling of noise, environmental effects, Effects of Interfering and Modifying inputs, Error analysis, Systematic error, Random error. Statistical methods for noise and error analysis and Modelling. Module IV: Reliability analysis of Biomedical Instruments [L-4] Concept of Reliability, Reliability of measurement systems, Reliability enhancement strategies Module V: Operation of Physiological organs, Bioelectric Potentials and Electrodes [L-7] Operation of Physiological organs, Operation of Nerves system, Operation of heart, Operation of Iungs, Operation of Muscular system, Sources of bioelectric potentials, Bioelectric electrodes Module VI: Building blocks of Biomedical Instruments [L-9] Bioelectric sensors, Sensors, Signal conditioning circuits, Bridge circuits, Amplifiers, Filters, Oscillators, ADC, Signal Processing Units, Microcontrollers, Data Presentation elementsText Books, and/or reference materialText Books: 1. John G. Webster, Medical Instrument, Medical Imaging techniques, Assistive Respiratory systemText Books, and/or reference material1. John G. Webster, Medical Instrument systems. Pearson Education India; 3rd edition, 20023. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education;, 2014Reference Material: 1. Research Articles		Response time, Settling time, Gain, bandwidth
Image: constraint of the second sec		Module III: Error and Noise in Biomedical Measurements [L-4]
Systematic error, Random error. Statistical methods for noise and error analysis and Modelling.Module IV: Reliability analysis of Biomedical Instruments [L-4] Concept of Reliability, Reliability of measurement systems, Reliability enhancement strategiesModule V: Operation of Physiological organs, Bioelectric Potentials and Electrodes [L-7] Operation of Physiological organs, Operation of Nerves system, Operation of heart, Operation of Iungs, Operation of Muscular system, Sources of bioelectric potentials, Bioelectric electrodesModule VI: Building blocks of Biomedical Instruments [L-9] Bioelectric sensors, Sensors, Signal conditioning circuits, Bridge circuits, Amplifiers, Filters, Oscillators, ADC, Signal Processing Units, Microcontrollers, Data Presentation elementsModule VI: Application Specific Biomedical Instruments [L-10] Clinical thermometer, Sphygmomanometer, Digital Statoscope, ECG signal measuring instrument, EEG signal measuring instrument, Medical Imaging techniques, Assistive Respiratory systemText Books, and/or reference materialText Books: 1. John G. Webster, Medical Instrument systems. Pearson Education India; 3rd edition, 20023. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education;, 2014Reference Material: 1. Research Articles		Sources of noise in measurement systems, mathematical modelling of noise,
Modelling.Module IV: Reliability analysis of Biomedical Instruments [L-4]Concept of Reliability, Reliability of measurement systems, Reliability enhancement strategiesModule V: Operation of Physiological organs, Bioelectric Potentials and Electrodes [L-7]Operation of Physiological organs, Operation of Nerves system, Operation of heart, Operation of Iungs, Operation of Muscular system, Sources of bioelectric potentials, Bioelectric electrodesModule VI: Building blocks of Biomedical Instruments [L-9] Bioelectric sensors, Sensors, Signal conditioning circuits, Bridge circuits, Amplifiers, Filters, Oscillators, ADC, Signal Processing Units, Microcontrollers, Data Presentation elementsModule VII: Application Specific Biomedical Instruments [L-10] Clinical thermometer, Sphygmomanometer, Digital Statoscope, ECG signal measuring instrument, EEG signal measuring instrument, Medical Imaging techniques, Assistive Respiratory systemText Books, and/or reference materialText Books: 1. John G. Webster, Medical Instrumentation Application and Design, 4ed, Wiley, 20152. J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition, 20023. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education; 2014Reference Material: 1. Research Articles1. Research Articles		environmental effects, Effects of Interfering and Modifying inputs, Error analysis,
Module IV:Reliability analysis of Biomedical Instruments[L-4]Concept of Reliability, Reliability of measurement systems, Reliability enhancement strategiesStrategiesModule V:Operation of Physiological organs, Bioelectric Potentials and Electrodes[L-7]Operation of Physiological organs, Operation of Nerves system, Operation of heart, Operation of lungs, Operation of Muscular system, Sources of bioelectric potentials, Bioelectric electrodesModule VI:Building blocks of Biomedical InstrumentsModule VI:Building blocks of Biomedical InstrumentsBioelectric sensors, Sensors, Signal conditioning circuits, Bridge circuits, Amplifiers, Filters, Oscillators, ADC, Signal Processing Units, Microcontrollers, Data Presentation elementsModule VI:Application Specific Biomedical InstrumentsModule VI:Application Specific Biomedical InstrumentsModule VI:Application Specific Biomedical Instruments, L-10] Clinical thermometer, Sphygmomanometer, Digital Statoscope, ECG signal measuring instrument, EEG signal measuring instrument, Medical Imaging techniques, Assistive Respiratory systemText Books, and/or reference materialText Books: 1. John G. Webster, Medical Instrumentation Application and Design, 4ed, Wiley, 20152.J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition, 20023.R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education;, 2014Reference Material: 1.Research Articles		Systematic error, Random error. Statistical methods for noise and error analysis and
Concept of Reliability, Reliability of measurement systems, Reliability enhancement strategiesModule V: Operation of Physiological organs, Bioelectric Potentials and Electrodes [L-7]Operation of Physiological organs, Operation of Nerves system, Operation of heart, Operation of lungs, Operation of Muscular system, Sources of bioelectric potentials, Bioelectric electrodesModule VI: Building blocks of Biomedical Instruments [L-9] Bioelectric sensors, Sensors, Signal conditioning circuits, Bridge circuits, Amplifiers, Filters, Oscillators, ADC, Signal Processing Units, Microcontrollers, Data Presentation elementsModule VI: Application Specific Biomedical Instruments [L-10] Clinical thermometer, Sphygmomanometer, Digital Statoscope, ECG signal measuring instrument, EEG signal measuring instrument, Medical Imaging techniques, Assistive Respiratory systemText Books, and/or reference materialText Books: 1. John G. Webster, Medical Instrument systems. Pearson Education India; 3rd edition, 20022. J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition, 200220023. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education;, 2014Reference Material: 1. Research Articles		Modelling.
StrategiesModule V: Operation of Physiological organs, Bioelectric Potentials and Electrodes[L-7]Operation of Physiological organs, Operation of Nerves system, Operation of heart, Operation of lungs, Operation of Muscular system, Sources of bioelectric potentials, Bioelectric electrodesModule VI: Building blocks of Biomedical Instruments [L-9] Bioelectric sensors, Sensors, Signal conditioning circuits, Bridge circuits, Amplifiers, Filters, Oscillators, ADC, Signal Processing Units, Microcontrollers, Data Presentation elementsModule VI: Application Specific Biomedical Instruments [L-10] Clinical thermometer, Sphygmomanometer, Digital Statoscope, ECG signal measuring instrument, EEG signal measuring instrument, Medical Imaging techniques, Assistive Respiratory systemText Books, and/or reference materialText Books: 1. John G. Webster, Medical Instrument systems. Pearson Education India; 3rd edition, 20023. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education;, 2014Reference Material: 1. Research Articles		Module IV: Reliability analysis of Biomedical Instruments [L-4]
Module V: Operation of Physiological organs, Bioelectric Potentials and Electrodes[L-7]Operation of Physiological organs, Operation of Nerves system, Operation of heart, Operation of lungs, Operation of Muscular system, Sources of bioelectric potentials, Bioelectric electrodesModule VI: Building blocks of Biomedical Instruments [L-9] Bioelectric sensors, Sensors, Signal conditioning circuits, Bridge circuits, Amplifiers, Filters, Oscillators, ADC, Signal Processing Units, Microcontrollers, Data Presentation elementsModule VII: Application Specific Biomedical Instruments [L-10] Clinical thermometer, Sphygmomanometer, Digital Statoscope, ECG signal measuring instrument, EEG signal measuring instrument, Medical Imaging techniques, Assistive Respiratory systemText Books, and/or materialText Books: 1. John G. Webster, Medical Instrumentation Application and Design, 4ed, Wiley, 2015 2. J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition, 20023. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education; 2014Reference Material: 1. Research Articles		Concept of Reliability, Reliability of measurement systems, Reliability enhancement
[L-7]Operation of Physiological organs, Operation of Nerves system, Operation of heart, Operation of lungs, Operation of Muscular system, Sources of bioelectric potentials, Bioelectric electrodesModule VI: Building blocks of Biomedical Instruments [L-9] Bioelectric sensors, Sensors, Signal conditioning circuits, Bridge circuits, Amplifiers, Filters, Oscillators, ADC, Signal Processing Units, Microcontrollers, Data Presentation elementsModule VI: Application Specific Biomedical Instruments [L-10] Clinical thermometer, Sphygmomanometer, Digital Statoscope, ECG signal measuring instrument, EEG signal measuring instrument, Medical Imaging techniques, Assistive Respiratory systemText Books, and/or reference materialText Books: 1. John G. Webster, Medical Instrumentation Application and Design, 4ed, Wiley, 2015 2. J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition, 20023. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education;, 2014 Reference Material: 1. Research Articles		strategies
Operation of Physiological organs, Operation of Nerves system, Operation of heart, Operation of lungs, Operation of Muscular system, Sources of bioelectric potentials, Bioelectric electrodesModule VI: Building blocks of Biomedical Instruments [L-9] Bioelectric sensors, Sensors, Signal conditioning circuits, Bridge circuits, Amplifiers, Filters, Oscillators, ADC, Signal Processing Units, Microcontrollers, Data Presentation elementsModule VII: Application Specific Biomedical Instruments [L-10] Clinical thermometer, Sphygmomanometer, Digital Statoscope, ECG signal measuring instrument, EEG signal measuring instrument, Medical Imaging techniques, Assistive Respiratory systemText Books, and/or reference materialText Books: 1. John G. Webster, Medical Instrument systems. Pearson Education India; 3rd edition, 2002Zeven 3. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education;, 2014 Reference Material: 1. Research Articles		Module V: Operation of Physiological organs, Bioelectric Potentials and Electrodes
Operation of lungs, Operation of Muscular system, Sources of bioelectric potentials, Bioelectric electrodesModule VI: Building blocks of Biomedical Instruments [L-9] Bioelectric sensors, Sensors, Signal conditioning circuits, Bridge circuits, Amplifiers, Filters, Oscillators, ADC, Signal Processing Units, Microcontrollers, Data Presentation elementsModule VII: Application Specific Biomedical Instruments [L-10] Clinical thermometer, Sphygmomanometer, Digital Statoscope, ECG signal measuring instrument, EEG signal measuring instrument, Medical Imaging techniques, Assistive Respiratory systemText Books, and/or reference materialText Books: 1. John G. Webster, Medical Instrumentation Application and Design, 4ed, Wiley, 2015 2. J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition, 2002 3. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education; 2014 Reference Material: 1. Research Articles		[L-7]
Bioelectric electrodesModule VI: Building blocks of Biomedical Instruments [L-9]Bioelectric sensors, Sensors, Signal conditioning circuits, Bridge circuits, Amplifiers, Filters, Oscillators, ADC, Signal Processing Units, Microcontrollers, Data Presentation elementsModule VII: Application Specific Biomedical Instruments [L-10] Clinical thermometer, Sphygmomanometer, Digital Statoscope, ECG signal measuring instrument, EEG signal measuring instrument, Medical Imaging techniques, Assistive Respiratory systemText Books, and/or reference materialText Books: 1. John G. Webster, Medical Instrumentation Application and Design, 4ed, Wiley, 2015 2. J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition, 2002 3. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education;, 2014 Reference Material: 1. Research Articles		Operation of Physiological organs, Operation of Nerves system, Operation of heart,
Module VI: Building blocks of Biomedical Instruments [L-9]Bioelectric sensors, Sensors, Signal conditioning circuits, Bridge circuits, Amplifiers, Filters, Oscillators, ADC, Signal Processing Units, Microcontrollers, Data Presentation elementsModule VII: Application Specific Biomedical Instruments [L-10] Clinical thermometer, Sphygmomanometer, Digital Statoscope, ECG signal measuring instrument, EEG signal measuring instrument, Medical Imaging techniques, Assistive Respiratory systemText Books, and/or reference materialText Books: 1. John G. Webster, Medical Instrumentation Application and Design, 4ed, Wiley, 2015 2. J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition, 20023. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education;, 2014Reference Material: 1. Research Articles		Operation of lungs, Operation of Muscular system, Sources of bioelectric potentials,
Bioelectric sensors, Sensors, Signal conditioning circuits, Bridge circuits, Amplifiers, Filters, Oscillators, ADC, Signal Processing Units, Microcontrollers, Data Presentation elementsModule VII: Application Specific Biomedical Instruments [L-10] Clinical thermometer, Sphygmomanometer, Digital Statoscope, ECG signal measuring instrument, EEG signal measuring instrument, Medical Imaging techniques, Assistive Respiratory systemText Books, and/or reference materialText Books: 1. John G. Webster, Medical Instrumentation Application and Design, 4ed, Wiley, 2015 2. J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition, 20023. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education;, 2014 Reference Material: 1. Research Articles		Bioelectric electrodes
Filters, Oscillators, ADC, Signal Processing Units, Microcontrollers, Data Presentation elementsModule VII: Application Specific Biomedical Instruments [L-10] Clinical thermometer, Sphygmomanometer, Digital Statoscope, ECG signal measuring instrument, EEG signal measuring instrument, Medical Imaging techniques, Assistive Respiratory systemText Books, and/orText Books: 1. John G. Webster, Medical Instrumentation Application and Design, 4ed, Wiley, 2015 2. J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition, 2002Material2002 3. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education;, 2014 Reference Material: 1. Research Articles		Module VI: Building blocks of Biomedical Instruments [L-9]
elementsModule VII: Application Specific Biomedical Instruments [L-10]Clinical thermometer, Sphygmomanometer, Digital Statoscope, ECG signal measuring instrument, EEG signal measuring instrument, Medical Imaging techniques, Assistive Respiratory systemText Books, and/or reference materialText Books: 1. John G. Webster, Medical Instrumentation Application and Design, 4ed, Wiley, 2015 2. J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition, 2002 3. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education;, 2014 Reference Material: 1. Research Articles		Bioelectric sensors, Sensors, Signal conditioning circuits, Bridge circuits, Amplifiers,
Module VII: Application Specific Biomedical Instruments [L-10]Clinical thermometer, Sphygmomanometer, Digital Statoscope, ECG signal measuring instrument, EEG signal measuring instrument, Medical Imaging techniques, Assistive Respiratory systemText Books, and/orText Books:1. John G. Webster, Medical Instrumentation Application and Design, 4ed, Wiley, 20152. J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition, 20023. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education;, 2014Reference Material: 1. Research Articles		Filters, Oscillators, ADC, Signal Processing Units, Microcontrollers, Data Presentation
Clinical thermometer, Sphygmomanometer, Digital Statoscope, ECG signal measuring instrument, EEG signal measuring instrument, Medical Imaging techniques, Assistive Respiratory systemText Books, and/orText Books: 1. John G. Webster, Medical Instrumentation Application and Design, 4ed, Wiley, 2015 2. J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition, 2002 3. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education;, 2014 Reference Material: 1. Research Articles		elements
instrument, EEG signal measuring instrument, Medical Imaging techniques, Assistive Respiratory systemText Books, and/orText Books:1. John G. Webster, Medical Instrumentation Application and Design, 4ed, Wiley, 2015reference material2. J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition, 20023. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education;, 2014Reference Material: 1. Research Articles		Module VII: Application Specific Biomedical Instruments [L-10]
Respiratory system Text Books, and/or Text Books: 1. John G. Webster, Medical Instrumentation Application and Design, 4ed, Wiley, 2015 reference 2. J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition, 2002 3. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education;, 2014 Reference Material: 1. Research Articles		Clinical thermometer, Sphygmomanometer, Digital Statoscope, ECG signal measuring
Text Books, and/orText Books:1. John G. Webster, Medical Instrumentation Application and Design, 4ed, Wiley, 20152. J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition, 20023. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education;, 2014Reference Material: 1. Research Articles		instrument, EEG signal measuring instrument, Medical Imaging techniques, Assistive
 and/or reference material John G. Webster, Medical Instrumentation Application and Design, 4ed, Wiley, 2015 J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition, 2002 R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education;, 2014 Reference Material: 1. Research Articles 		Respiratory system
reference 2. J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition, 2002 3. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education;, 2014 Reference Material: 1. Research Articles	Text Books,	Text Books:
material 2002 3. R.S. Khandpur, <i>Handbook of Biomedical Instrumentation</i> , 3rd Edition, McGraw Hill Education;, 2014 Reference Material: 1. Research Articles	and/or	1. John G. Webster, Medical Instrumentation Application and Design, 4ed, Wiley, 2015
 R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill Education;, 2014 Reference Material: Research Articles 	reference	2. J. Bentley, Principles of measurement systems. Pearson Education India; 3rd edition,
Education;, 2014 Reference Material: 1. Research Articles	material	2002
Reference Material: 1. Research Articles		3. R.S. Khandpur, Handbook of Biomedical Instrumentation, 3rd Edition, McGraw Hill
1. Research Articles		Education;, 2014
		Reference Material:
COURSE ARTICULATION MATRIX		1. Research Articles
	COURSE ARTICULA	ITION MATRIX

Mapping CO (Course Outcome)

to

PO (Programme Outcome) and PSO (Programme Specific Outcome)

PO/PSO CO	PO #1	PO #2	PO #3	PO #4	PO #5	PO #6	PO #7	PO #8	PO #9	PO #10	PO #11	PO #12	PSO #1	PSO #2	PSO #3
CO#1	3	-	-	-	-	2	-	-	-	-	-	-	3	-	-
CO#2	2	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO#3	1	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO#4	2	1	2	-	-	2	-	-	-	-	-	-	3	2	-
CO#5	1	1	1	3	-	2	-	-	-	-	-	-	2	1	-

Correlation levels 1, 2 or 3 as defined below:

	Departmen	t of Electronics and	Communica	ition Engine	ering								
Course	Title of the course	Program Core			contact hours	5 = 42	Credit						
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total							
coue		(PEL)	(L)	(T)	(P)	Hours							
ECE725	Ad Hoc & Sensor	PEL	3	0	0	3	3						
101/25	Networks	1	5	U	Ū	5	5						
Pre-requisi		Course Assessmer	nt methods										
i i c i cquisi				MT) and Fn	d Assessmer	nt (FA))							
None		(Continuous (CT), Mid-Term (MT) and End Assessment (EA)) CT+MT+EA											
Course		stand the fundam	ontals of	Wiroloss /	Aboc and 9	Sonsor n	atworks						
Outcomes	and its applicati												
	•CO2To study traditional proto	the various proto ocols.	cols at va	rious laye	rs and its	differenc	es with						
	 CO3 Unders Networks 	tanding Commun	ication Th	eoretic a	spects of <i>i</i>	Adhoc /	Sensor						
		•CO4 To learn about the issues and challenges in the design of wireless ad hocand Sensor Networks.											
Topics Covered	characteristics PANs, WANs, ar 2. Introduction networks, unio network, driving of sensor networ (3.Communiation Route Discove Connectivity, Lif 4. MAC Protoco goals, classificat Protocols, Sens TDMA/FDMA, discovery, qualit 5.Routing Proto protocols, table power aware ro 6.QoS and Ene	cols: Issues in desi -driven, on-deman uting protocols. ergy Management	els, multip Internet. r network and challe ues in adho carchitecto ework for l of Hops, behaviour ols for adh cols, Scheo AC MAC p C, S-MAC, gning a rou d, hybrid, f	ole access s: Key de nges, adv oc wireless ure, data d Multihop / Bit Error hoc/sensor dule-Basec protocols f , LEACH, uting proto flooding, h and Cha	techniques finitions of vantages of s networks, lisseminatio Adhoc Network Rate of N wireless n l and Rando for sensor r IEEE 802 bcol, classifi- ierarchical,	, wireles (4L adhoc/ f ad-hoc issues in on and ga vorks: To Multihop (8I etworks, om Acces network, .15.4. 1 (10 cation of and (8 yrovidin	s LANs, sensor sensor design thering. pology, Route, b b s-Based Hybrid- ocation DL) routing BL)						
	classifications, MAC and network layer solutions, QoS frameworks, ener management. (6L)												

Text Books,	Text Books:
and/or	1. C. Siva Ram Murthy, and B. S. Manoj, "AdHoc Wireless networks ", Pearson
reference	Education - 2008.
material	2. Ozan K.Tonguz and Gianluigi Ferrari, "Ad Hoc Wireless Networks" Wiley India
	Reference Books <u>:</u>
	3. Feng Zhao and LeonidesGuibas, "Wireless sensor networks ", Elsevier publication -
	2004.
	4. Ian F. Akyildiz, Mehmet Can Vuran "Wireless Sensor Networks", Wiley
	5. Chiara Buratti, Marco Martalò, Gianluigi Ferrari, Roberto Verdone, "Sensor
	Networks with IEEE 802.15.4 Systems, Distributed Processing, MAC and
	Connectivity

COURSE ARTICULATION MATRIX

Mapping of CO (Cours	e Outo	come)	to PO	(Prog	ramm	e Out	come)) and I	PSO (Pr	ogram	me Sp	ecific O	utcome	:)
PO/PSO	РО	РО	РО	РО	PO	PO	PO	PO	PO	РО	РО	РО	PSO	PSO	PSO
C0	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	3	3	2	2	1	1	1	1	1	1	1	3	2	3
CO#2	3	3	3	2	1	1	1	1	1	1	1	1	3	2	2
CO#3	3	3	3	2	1	1	2	1	1	1	1	1	3	2	2
CO#4	3	3	3	2	1	1	2	1	1	1	1	1	3	2	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

		ent of Electronics an			-							
Course	Title of the course	Program Core		Number of o			Credit					
Code		(PCR) /	Lecture	Tutorial	Practical	Total						
		Elective (PEL)	(L)	(T)	(P)	Hours						
ECE810	Wireless	PEL	3	0	0	3	3					
	Communication											
Pre-requisi	tes	Course Assessmer	nt methods	•	•							
		(Continuous (CT), Mid-Term (MT) and End Assessment (EA))										
NIL		CT+MT+EA										
Course	On successful con	On successful completion of this course, students should have the skills and knowledge to :										
Outcomes	On successful con		se, student				se io .					
outcomes	network and traff CO2. Determine system paramete CO3. Analyze a appropriate tran performance. CO4. Application CO5. Understand Communication. CO6. Describe	and differentiate	cellular ne opriate mo of the wirel r and tran multi-ante ital Commu lodulation four gene	twork with gi odel of wirel less medium. Insmitter dive enna system unication Con Schemes a erations of	ven quality o ess fading ch ersity techni s and evalu cepts in Fadi nd Multiple wireless st	f service con nannel base ques.Deter uate the ng Channel access for andard fo	nstraints ed on th mine th data rat prWireles r cellula					
Topics Covered/ Syllabus	(OFDM) technolo 1. Introduction 2. Cellular syste frequency m Erlang B, Cel 3. Characteriza Shadowing, S 4. Receiver Techniques, Stay), BER ar	tand wireless comm gies. to Wireless Persona ems concepts, princi anagement, channe I splitting and Direct tion of wireless radi Statistical Character hniques for fading C Time and Frequency ad outage with Diver schemes for wireless	al Communi ples, syster l assignmer ional anten o channel, p zation of fa hannel: De Diversity, l sity, Equal	cation, Mobi n design func nt, handoff, p na etc (06 hrs propagation p ding Channe tection of Sig Receive Diver ization, Fadir	le radio syste lamentals, sp ower control 5) bath models. I (08 hrs) nal in Fading sity(SC, MRC og mitigation	ems. (02 hrs bectrum effi , Call blocki Fading and Channel, D C, EGC, Switt (10 hrs)	i) iciency, ing, iversity					
Text Books,	 Multiple accorrection Wide-band Correction schemes, correction Wireless Net 	ess techniques: TDM CDMA, Multiple acce nparison. (06 hrs) works and Standard	IA, FDMA, s ss Perform	pread spectr ance of CDM	um techniqu A, Capacities	es, Cellular of multiple	access					
and/or Reference		1. Wireless Communications: Principles and Practice: Theodore Rappaport, Pearson, 2 nd										
material		unication: Andrea G	oldsmith. C	ambridge Ur	iversity Press	s.						
	Reference Books 1. Principles Jagannat 2. Fundame	Jagannatham, McGraw-Hill India.										

EIGHTH SEMESTER

COURSE ARTICULATION MATRIX

Mappin	g of CC) (Cour	rse Out	tcome)	to PO	(Prog	ramme	Outco	ome) a	nd PSC) (Progi	ramme	Specifi	c Outco	me)
PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
СО	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	2	2	1	1	2	1	1	1	1	1	1	3	2	2
CO#2	3	3	3	2	1	2	1	1	1	1	1	1	2	2	2
CO#3	3	3	3	2	1	2	2	1	1	1	1	1	3	3	2
CO#4	3	3	3	2	1	2	1	1	1	1	1	1	3	3	2
CO#5	3	3	3	2	1	2	1	1	1	1	1	1	3	2	3
CO#6	3	3	3	2	2	2	1	1	1	1	1	1	3	2	2

Correlation levels 1, 2 or 3 as defined below:

		Department of El	ectronics & C	ommunicati	on Engineerin	g						
Courses	Title of	Program Core	Total	Number of	contact hours	= 42						
Course	the	(PCR) /	Lecture	Tutorial	Practical	Total	Credit					
Code	course	Elective (PEL)	(L)	(T)	(P)	Hours						
ECE811	Mixed Signal IC Design	PEL	3 0 0 3 3									
Pre-requisi	tes		Course As	sessment me	ethods:							
			(Continuo	us Assessme	nt (CA), Mid-s	emester ass	sessment (MA)					
			and end as	sessment (E	A))							
Analog IC E	Design (ECE7:	12)	Assignmer	nts, Quiz/cla	ss test, Mid-se	mester Exa	mination and					
Digital IC D	esign (ECE62	.2)	End Semes	ter Examina	tion							
Course	After the	e completion of th	e course, the	e student wil	l be able to:							
Outcomes	• CO1: E	xplain the operat	ion of variou	s High perfo	rmance OTAs/	Opamps.						
	• CO2: D	esign Analog Circ	uits using gm	n/ID techniq	ues.							
	• CO3 : C	Create the Layout	of a CMOS M	lixed Signal S	System.							
		nalyze a Compara										
		•	of Switched Capacitor Circuits in Sampled data Systems									
			werter architectures based on Area/Power/Speed.									
Topics		. Introduction [-									
Covered		of Mixed-Signa										
		Telescopic case		d cascode,	two-stage,	Rail-to-Rail,	Gain boosted					
		amps, Comparisor		1								
		I. g _m over I _D Desi	-		in a lather a	سمام محمد امام						
	-	I _D technique: Tra 5. Various design p		•			-					
		lifier, and Two sta		-			Colgin. Design of					
		II. Opamp perfo			annque.							
		ew rate & Settli			Linearity. Dist	ortion. Off	set Cancellation					
		chniques.		,, .	,							
		V. Layout Techn	iques[L – 3]									
		yout Techniques:	• • •	n to CMOS p	orocess, CMOS	S Layers, De	sign rule basics,					
	DF	RC, LVS, Passive	and Trans	istor layout	, Fingering,	Interdigitiza	tion. Matching					
	со	mponents: Comm	non centroid,	Use of Dum	my. Matching	error, error	⁻ propagation.					

	Module V. Switched Capacitor Circuits [L – 5]
	Basic philosophy of Switched capacitor circuits, design of switched-capacitor
	amplifiers and integrators, effect of opamp finite gain, bandwidth and offset, circuit
	techniques for reducing effects of opamp imperfections, switches and charge
	injection and clock feed-through effects.
	Module VI. Sample and Hold[L – 4]
	Operation of sample and holds circuits and theirs non-idealities. Comparators: Opamp
	based, Strong Arm Regenerative Latch, Latch dynamics, Offset reduction.
	Module VII. Data Converters [L – 12]
	Fundamentals of data converters; Introduction to data converter metrics: SNR, DNL,
	INL, Offset & Gain Error, SINAD, ENOB, SFDR, SDNR, Settling time etc. Nyquist rate
	D/A converters - voltage, current and charge mode converters, hybrid and segmented
	converters. Nyquist rate A/D converters (Flash, interpolating, folding flash, SAR and
	pipelined architectures)
	Module VIII. Phase Locked Loop [L – 3]
	Basic PLL topology, dynamics of simple PLL, Multiplier, phase detectors, lock
	acquisition, Phase frequency detector, Loop filters, Charge Pump PLLs.
Text	Text Books:
Books,	1. BehzadRazavi, "Design of Analog CMOS Integrated Circuits", McGraw Hill, 2nd Ed. 2017
and/or	2. Tony Chan Carusone; David Johns; Kenneth Martin, "Analog Integrated Circuit Design",
Reference	Wiley, 2nd Ed. 2013,
materials	3. BehzadRazavi, "Principles of Data Conversion System Design", Wiley-IEEE Press, 1994
	4. Adel Sedra , Kenneth SmithTony Chan Carusone, Vincent Gaudet, "Microelectronic
	<i>Circuits</i> ", Oxford ; 8th Ed.; 2020
	Reference Books/Materials:
	1. R.Gregorian, "Introduction to CMOS Opamps and comparators", Wiley, 1999
	2. Rudy J. Van De Plassche, "CMOS Integrated Analog-to-Digital and Digital-to-Analog
	Converters", Springer, 2nd Ed. 2003.
	3. Ali Hajimiri, Caltech, "New Analog Circuit
	Design", https://www.youtube.com/watch?v=403CnTftB4M&list=PLc7Gz02Znph-c2-
	<u>ssFpRrzYwbzpIXfXUT</u>

Марріі	ng of C	O (Cou	rse Ou	tcome	to PO	(Progr	amme	Outco	me) ar	nd PSO	(Progr	amme	Specific	Outcom	ne)
PO/PSO	РО	PO	PO	PO	PO	РО	PO	PO	PO	РО	РО	PO	PSO#	PSO#	PSO#
СО	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	1	2	3
CO#1	2	1	3	3	1	1	1	1	1	1	1	2	2	2	1
CO#2	3	2	2	1	1	1	1	1	1	1	1	1	2	1	1
CO#3	3	3	3	1	1	1	1	1	1	1	1	1	3	3	2
CO#4	1	2	3	2	1	1	1	1	1	1	1	1	3	3	2
CO#5	2	3	1	2	1	2	2	1	1	1	1	1	2	3	2
CO#6	3	2	3	2	1	1	1	1	1	1	1	1	3	3	2

Correlation levels 1, 2 or 3 as defined below:

-			artment of Electronic		v	v								
Course	Title		Program Core	ontact hours =	L	Credi								
Code	cou	irse	(PCR) / Elective (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours							
ECE812	Broad		PEL	3	0	0	3	3						
	Commu	nication												
Pre-requi	sites		Course Assessment	t methods										
			(Continuous (CT), N	/lid-Term (MT	⁻), End Assessr	nent (EA))								
Analog Co	mmunicatio	on	The assessment methods comprise of quizzes, multiple choice type questions											
(ECC401),			involving real world examples, and subjective questions all either designed in											
-	mmunicatio	n	google form or assessed through pen and paper.											
(ECC501)														
Course O	utcomes		derstand the evoluti	ion, current s	state and ten	dency of broad	dband comm	nunicatio						
		networks												
			rn the technologies a			band commun	ication netw	orks.						
			rn the existing access	-			c:							
			quire the capacity of			d to the desig	gn, configur	ation an						
Talia		. ,	ent of broadband co	mmunication	networks.									
Topics Co	overed		ntroduction-[4L]		· Custome · C ·			hita						
			ents of Broadband Co		•									
			roadband Data No					Netwo						
					mmunications	; internetwork	ing.							
			rchitectures; Future of Broadband Telecommunications; Internetworking. ternet based Networks – [6L]											
			-	-	ernet Protocol Suite; IPv6 standard; Voice over IP; Internet Security; Flow Control; Intran									
		Internet	Protocol Suite; IPv6 s	standard; Void		•		l; Intran						
		Internet and Extra	Protocol Suite; IPv6 s anet Technologies an	standard; Void d Application		•		l; Intran						
		Internet and Extra Network	Protocol Suite; IPv6 s anet Technologies an ing Technologies– [8	standard; Void d Application BL]	s; Intranet and	d Extranet Desi	gn Issues.							
		Internet and Extra Network X.25 and	Protocol Suite; IPv6 s anet Technologies an ing Technologies– [8 d Frame Relay; Fibe	standard; Void Id Application BL] er Channel T	s; Intranet and echnology ar	d Extranet Desi d Topologies;	gn Issues. Synchronou	us Optic						
		Internet and Extra Network X.25 and Network	Protocol Suite; IPv6 s anet Technologies an ing Technologies– [8 d Frame Relay; Fibe (SONET), Synchron	standard; Void d Application BL] er Channel T ous Digital H	s; Intranet and echnology ar Hierarchy (SD	d Extranet Desi d Topologies; H), Next-Gene	gn Issues. Synchronou eration SON	us Optic ET (NGS						
		Internet and Extra Network X.25 and Network Virtual	Protocol Suite; IPv6 s anet Technologies an ing Technologies– [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Typ	standard; Void Id Application BL] er Channel T Ious Digital H pes, General	s; Intranet and echnology ar Hierarchy (SD Architecture	d Extranet Desi d Topologies; H), Next-Gene e, Advantages	gn Issues. Synchronou eration SON	us Optic ET (NGS						
		Internet and Extra Network X.25 and Network Virtual I Security	Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Ty Issues; ISDN and BISE	standard; Void Id Application BL] er Channel T Ious Digital H pes, General	s; Intranet and echnology ar Hierarchy (SD Architecture	d Extranet Desi d Topologies; H), Next-Gene e, Advantages	gn Issues. Synchronou eration SON	us Optic ET (NGS						
		Internet and Extra Network X.25 and Network Virtual Security Access N	Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Ty Issues; ISDN and BISE etworks– [8L]	standard; Void d Application BL] er Channel T ous Digital H pes, General DN, ATM Netv	s; Intranet and echnology ar Hierarchy (SD Architecture vorks and App	d Extranet Desi d Topologies; H), Next-Gene e, Advantages lications.	gn Issues. Synchronou eration SON and Disac	us Optic ET (NGS dvantage						
		Internet and Extra Network X.25 and Network Virtual Security Access N Digital Su	Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Ty Issues; ISDN and BISE etworks– [8L] ubscriber Line (DSL) S	standard; Void d Application BL] er Channel T ious Digital H pes, General DN, ATM Netv Systems- Asyn	s; Intranet and echnology an Hierarchy (SD Architecture vorks and App nmetric Digita	d Extranet Desi d Topologies; H), Next-Gene e, Advantages lications. I Subscriber Lin	gn Issues. Synchronou eration SON and Disac nes (ADSL), S	us Optic ET (NGS dvantage Symmetr						
		Internet and Extra Network X.25 and Network Virtual I Security Access N Digital Su Digital Su	Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Ty Issues; ISDN and BISE etworks– [8L] ubscriber Line (DSL) S ubscriber Lines (SDSL	standard; Void d Application 3L] er Channel T ious Digital H pes, General DN, ATM Netv Systems- Asyn), High Data R	s; Intranet and echnology an Hierarchy (SD Architecture vorks and App nmetric Digita ate Digital Su	d Extranet Desi d Topologies; H), Next-Gene e, Advantages lications. I Subscriber Lin oscriber Lines (gn Issues. Synchronou eration SON and Disac nes (ADSL), S HDSL), Very	us Optic ET (NGS dvantage Gymmetr High Da						
		Internet and Extra Network X.25 and Network Virtual I Security Access N Digital Su Digital Su Rate Dig	Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Ty Issues; ISDN and BISE etworks– [8L] ubscriber Line (DSL) S ubscriber Lines (SDSL gital Subscriber Line	standard; Void d Application BL] er Channel T ious Digital H pes, General DN, ATM Netv Systems- Asyn), High Data R es (VDSL); Ca	s; Intranet and echnology ar Hierarchy (SD Architecture vorks and App nmetric Digita ate Digital Sul ble Modem	d Extranet Desi d Topologies; H), Next-Gene e, Advantages lications. I Subscriber Lin oscriber Lines (Systems- Tech	gn Issues. Synchronou eration SON and Disac nes (ADSL), S HDSL), Very unology, Exte	us Optic ET (NGS dvantage Symmetr High Da ernal ar						
		Internet and Extra Network X.25 and Network Virtual Security Access N Digital Su Digital Su Rate Dig Internal	Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Ty Issues; ISDN and BISE etworks– [8L] ubscriber Line (DSL) S ubscriber Lines (SDSL gital Subscriber Line Modems; Passive Op	standard; Void d Application BL] er Channel T ious Digital H pes, General DN, ATM Netw Systems- Asyn), High Data R es (VDSL); Ca btical Network	s; Intranet and echnology an Hierarchy (SD Architecture vorks and App nmetric Digita ate Digital Sul ble Modem (s (PON)- Type	d Extranet Desi d Topologies; H), Next-Gene e, Advantages lications. I Subscriber Lin oscriber Lines (Systems- Tech	gn Issues. Synchronou eration SON and Disac nes (ADSL), S HDSL), Very unology, Exte	us Optic ET (NGS dvantage Symmetr High Da ernal ar						
		Internet and Extra Network X.25 and Network Virtual I Security Access N Digital Su Digital Su Rate Dig Internal TDM PON	Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Ty Issues; ISDN and BISE etworks– [8L] ubscriber Line (DSL) S ubscriber Lines (SDSL gital Subscriber Line Modems; Passive Op Ns, Security Issues; Bu	standard; Void d Application BL] er Channel T ious Digital H pes, General DN, ATM Netw Systems- Asyn), High Data R es (VDSL); Ca btical Network	s; Intranet and echnology an Hierarchy (SD Architecture vorks and App nmetric Digita ate Digital Sul ble Modem (s (PON)- Type	d Extranet Desi d Topologies; H), Next-Gene e, Advantages lications. I Subscriber Lin oscriber Lines (Systems- Tech	gn Issues. Synchronou eration SON and Disac nes (ADSL), S HDSL), Very unology, Exte	us Optic ET (NGS dvantage Symmetr High Da ernal ar						
		Internet and Extra Network X.25 and Network Virtual I Security Access N Digital Su Digital Su Rate Dig Internal TDM PON Wireless	Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Typ Issues; ISDN and BISE etworks– [8L] ubscriber Line (DSL) S ubscriber Lines (SDSL sital Subscriber Line Modems; Passive Op Ns, Security Issues; Bu Networks – [8L]	standard; Void d Application BL] er Channel T ious Digital H pes, General DN, ATM Netv Systems- Asyn), High Data R es (VDSL); Ca otical Network roadband ove	s; Intranet and echnology an Hierarchy (SD Architecture vorks and App nmetric Digital sate Digital Sul ble Modem ks (PON)- Type r powerline.	d Extranet Desi d Topologies; H), Next-Gene e, Advantages lications. I Subscriber Lin oscriber Lines (Systems- Tech es, Advantages	gn Issues. Synchronou eration SON and Disac nes (ADSL), S HDSL), Very inology, Exte and Disadva	us Optic ET (NGS dvantage Symmetr High Da ernal ar antages						
		Internet and Extra Network X.25 and Network Virtual I Security I Access N Digital Su Digital Su Rate Dig Internal I TDM POR Wireless Wireless	Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Typ Issues; ISDN and BISE etworks– [8L] ubscriber Line (DSL) S ubscriber Lines (SDSL gital Subscriber Line Modems; Passive Op Ns, Security Issues; Bi Networks – [8L] LAN; Wireless ATM	standard; Void d Application BL] er Channel T ious Digital H pes, General DN, ATM Netw Systems- Asyn), High Data R es (VDSL); Ca btical Network roadband ove	s; Intranet and echnology an Hierarchy (SD Architecture vorks and App nmetric Digital ate Digital Sul ble Modem (S (PON)- Type or powerline.	d Extranet Desi d Topologies; H), Next-Gene e, Advantages lications. l Subscriber Lines (Systems- Tech es, Advantages ; WiMAX; Sate	gn Issues. Synchronoueration SON and Disac nes (ADSL), S HDSL), Very nology, Exte and Disadva	us Optic ET (NGS dvantage Symmetr High Da ernal ar antages unicatio						
		Internet and Extra Network X.25 and Network Virtual I Security I Access N Digital Su Digital Su Rate Dig Internal I TDM POR Wireless Wireless	Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Ty Issues; ISDN and BISE etworks – [8L] ubscriber Line (DSL) S ubscriber Lines (SDSL gital Subscriber Line Modems; Passive Op Ns, Security Issues; Bu Networks – [8L] LAN; Wireless ATM Orbital and Propagat	standard; Void d Application BL] er Channel T ious Digital H pes, General DN, ATM Netw Systems- Asyn), High Data R es (VDSL); Ca btical Network roadband ove	s; Intranet and echnology an Hierarchy (SD Architecture vorks and App nmetric Digital ate Digital Sul ble Modem (S (PON)- Type or powerline.	d Extranet Desi d Topologies; H), Next-Gene e, Advantages lications. l Subscriber Lines (Systems- Tech es, Advantages ; WiMAX; Sate	gn Issues. Synchronoueration SON and Disac nes (ADSL), S HDSL), Very nology, Exte and Disadva	us Optic ET (NGS dvantage Symmetr High Da ernal ar antages unicatio						
		Internet and Extra Network X.25 and Network Virtual I Security Access N Digital Su Digital Su Rate Dig Internal TDM PON Wireless Types, C based Int	Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Ty Issues; ISDN and BISE etworks – [8L] ubscriber Line (DSL) S ubscriber Lines (SDSL gital Subscriber Line Modems; Passive Op Ns, Security Issues; Bu Networks – [8L] LAN; Wireless ATM Orbital and Propagat	standard; Void d Application BL] er Channel T ious Digital H pes, General DN, ATM Netv Systems- Asyn), High Data R es (VDSL); Ca otical Network roadband ove l; Cellular Con tion Characte	s; Intranet and echnology an Hierarchy (SD Architecture vorks and App nmetric Digital ate Digital Sul ble Modem (S (PON)- Type or powerline.	d Extranet Desi d Topologies; H), Next-Gene e, Advantages lications. l Subscriber Lines (Systems- Tech es, Advantages ; WiMAX; Sate	gn Issues. Synchronoueration SON and Disac nes (ADSL), S HDSL), Very nology, Exte and Disadva	us Optic ET (NGS dvantage Symmetr High Da ernal ar antages unicatio						
		Internet and Extra Network X.25 and Network Virtual I Security I Access N Digital Su Digital Su Rate Dig Internal TDM POR Wireless Types, C based Int Network	Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Ty Issues; ISDN and BISE etworks– [8L] ubscriber Line (DSL) S ubscriber Lines (SDSL sital Subscriber Line Modems; Passive Op Ns, Security Issues; Bi Networks – [8L] LAN; Wireless ATM Orbital and Propagat ternet.	standard; Void d Application BL] er Channel T ious Digital H pes, General DN, ATM Netw Systems- Asyn), High Data R es (VDSL); Ca otical Network roadband ove l; Cellular Con tion Characte ecurity- [8L]	s; Intranet and echnology an Hierarchy (SD Architecture vorks and App nmetric Digital ate Digital Sul ble Modem (S (PON)- Type or powerline. mmunications eristics, VSAT	d Extranet Desi d Topologies; H), Next-Gene e, Advantages lications. I Subscriber Lines (Systems- Tech es, Advantages ; WiMAX; Sate Networks, Sat	gn Issues. Synchronoueration SON and Disac nes (ADSL), S HDSL), Very nology, Exte and Disadva ellite Comm tellite Radio	us Optic ET (NGS dvantage Symmetr High Da ernal ar antages unicatio , Satelli						
		Internet and Extra Network X.25 and Network Virtual I Security Access N Digital Su Digital Su Digital Su Rate Dig Internal TDM POR Wireless Wireless Types, C based Int Network Simple I	Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Typ Issues; ISDN and BISE etworks– [8L] Ubscriber Line (DSL) S Ubscriber Lines (SDSL gital Subscriber Line Modems; Passive Op Ns, Security Issues; BI Networks – [8L] LAN; Wireless ATM Orbital and Propagat ternet.	standard; Void d Application BL] er Channel T ious Digital H pes, General DN, ATM Netv Systems- Asyn), High Data R es (VDSL); Ca otical Network roadband ove l; Cellular Con tion Characte ecurity– [8L] ent Protocol	s; Intranet and echnology an Hierarchy (SD Architecture vorks and App metric Digita ate Digital Sul ble Modem (PON)- Type er powerline. mmunications eristics, VSAT (SNMP); Man	d Extranet Desi d Topologies; H), Next-Gene e, Advantages lications. I Subscriber Lines (Systems- Tech es, Advantages ; WiMAX; Sate Networks, Sate	gn Issues. Synchronou eration SON and Disac nes (ADSL), S HDSL), Very nology, Extr and Disadva ellite Comm tellite Radio	us Optic ET (NGS dvantage Symmetr High Da ernal ar antages unicatio , Satelli sse (MIE						
		Internet and Extra Network X.25 and Network Virtual I Security I Access N Digital Su Digital Su Rate Dig Internal I TDM POR Wireless Wireless Types, C based Int Network Simple I Remote	Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Typ Issues; ISDN and BISE etworks – [8L] ubscriber Line (DSL) S ubscriber Lines (SDSL tital Subscriber Line Modems; Passive Op Ns, Security Issues; Bu Networks – [8L] LAN; Wireless ATM Orbital and Propagat ternet. Management and S Network Manageme	standard; Void d Application BL] er Channel T ious Digital H pes, General DN, ATM Netv Systems- Asyn), High Data R es (VDSL); Ca otical Network roadband ove l; Cellular Con tion Characte ecurity– [8L] ent Protocol ng (RMON);	s; Intranet and echnology an Hierarchy (SD Architecture vorks and App nmetric Digital ate Digital Sul ble Modem (PON)- Type r powerline. mmunications eristics, VSAT (SNMP); Man Network Th	d Extranet Desi d Topologies; H), Next-Gene e, Advantages lications. I Subscriber Lin oscriber Lines (Systems- Tech es, Advantages ; WiMAX; Sate Networks, Sate nagement Info reats and Se	gn Issues. Synchronou eration SON and Disac nes (ADSL), S HDSL), Very nology, Extr and Disadva ellite Comm tellite Radio ormation Ba curity Requ	us Optic ET (NGS dvantage Symmetr High Da ernal ar antages unicatio , Satelli						
Text Book	<s, and="" or<="" td=""><td>Internet and Extra Network X.25 and Network Virtual I Security I Access N Digital Su Digital Su Rate Dig Internal I TDM POR Wireless Wireless Types, C based Int Network Simple I Remote</td><td>Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Typ Issues; ISDN and BISE etworks– [8L] Jbscriber Line (DSL) S Jbscriber Lines (SDSL gital Subscriber Line Modems; Passive Op Ns, Security Issues; BI Networks – [8L] LAN; Wireless ATM Orbital and Propagat ternet. Management and S Network Manageme Network Monitorir aphy; Firewalls; Intru</td><td>standard; Void d Application BL] er Channel T ious Digital H pes, General DN, ATM Netv Systems- Asyn), High Data R es (VDSL); Ca otical Network roadband ove l; Cellular Con tion Characte ecurity– [8L] ent Protocol ng (RMON);</td><td>s; Intranet and echnology an Hierarchy (SD Architecture vorks and App nmetric Digital ate Digital Sul ble Modem (PON)- Type r powerline. mmunications eristics, VSAT (SNMP); Man Network Th</td><td>d Extranet Desi d Topologies; H), Next-Gene e, Advantages lications. I Subscriber Lin oscriber Lines (Systems- Tech es, Advantages ; WiMAX; Sate Networks, Sate nagement Info reats and Se</td><td>gn Issues. Synchronou eration SON and Disac nes (ADSL), S HDSL), Very nology, Extr and Disadva ellite Comm tellite Radio ormation Ba curity Requ</td><td>us Optic ET (NGS dvantage Symmetr High Da ernal ar antages unication , Satelli</td></s,>	Internet and Extra Network X.25 and Network Virtual I Security I Access N Digital Su Digital Su Rate Dig Internal I TDM POR Wireless Wireless Types, C based Int Network Simple I Remote	Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Typ Issues; ISDN and BISE etworks– [8L] Jbscriber Line (DSL) S Jbscriber Lines (SDSL gital Subscriber Line Modems; Passive Op Ns, Security Issues; BI Networks – [8L] LAN; Wireless ATM Orbital and Propagat ternet. Management and S Network Manageme Network Monitorir aphy; Firewalls; Intru	standard; Void d Application BL] er Channel T ious Digital H pes, General DN, ATM Netv Systems- Asyn), High Data R es (VDSL); Ca otical Network roadband ove l; Cellular Con tion Characte ecurity– [8L] ent Protocol ng (RMON);	s; Intranet and echnology an Hierarchy (SD Architecture vorks and App nmetric Digital ate Digital Sul ble Modem (PON)- Type r powerline. mmunications eristics, VSAT (SNMP); Man Network Th	d Extranet Desi d Topologies; H), Next-Gene e, Advantages lications. I Subscriber Lin oscriber Lines (Systems- Tech es, Advantages ; WiMAX; Sate Networks, Sate nagement Info reats and Se	gn Issues. Synchronou eration SON and Disac nes (ADSL), S HDSL), Very nology, Extr and Disadva ellite Comm tellite Radio ormation Ba curity Requ	us Optic ET (NGS dvantage Symmetr High Da ernal ar antages unication , Satelli						
Text Book reference		Internet and Extra Network X.25 and Network Virtual I Security Access N Digital Su Digital Su Rate Dig Internal TDM POR Wireless Wireless Types, C based Int Network Simple I Remote Cryptogr	Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Typ Issues; ISDN and BISE etworks– [8L] Jbscriber Line (DSL) S Jbscriber Lines (SDSL gital Subscriber Line Modems; Passive Op Ns, Security Issues; BI Networks – [8L] LAN; Wireless ATM Orbital and Propagat ternet. Management and S Network Manageme Network Monitorir aphy; Firewalls; Intru	standard; Void d Application BL] er Channel T ious Digital H pes, General DN, ATM Netw Systems- Asyn), High Data R es (VDSL); Ca btical Network roadband ove l; Cellular Con tion Characte ecurity– [8L] ent Protocol ng (RMON); <u>ision Detectio</u>	s; Intranet and echnology an Hierarchy (SD Architecture vorks and App metric Digita ate Digital Sul ble Modem (SOM)- Type er powerline. mmunications eristics, VSAT (SNMP); Man Network Th n; Security Sta	d Extranet Desi d Topologies; H), Next-Gene e, Advantages lications. I Subscriber Lines (Systems- Tech es, Advantages ; WiMAX; Sate Networks, Sat nagement Info reats and Se andards- IPSec,	gn Issues. Synchronou eration SON and Disac nes (ADSL), S HDSL), Very nology, Extr and Disadva ellite Comm tellite Radio prmation Ba curity Requ DES.	us Optic ET (NGS dvantage Symmetr High Dat ernal ar antages o unication , Satellit use (MIB uirement						
		Internet and Extra Network X.25 and Network Virtual I Security Access N Digital Su Digital Su Rate Dig Internal TDM POR Wireless Wireless Types, C based Int Network Simple M Remote Cryptogr 1. (Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Typ Issues; ISDN and BISE etworks – [8L] ubscriber Line (DSL) S ubscriber Lines (SDSL gital Subscriber Line Modems; Passive Op Ns, Security Issues; Bi Networks – [8L] LAN; Wireless ATM Orbital and Propagat ternet. Management and S Network Manageme Network Monitorir aphy; Firewalls; Intru oks :	standard; Void d Application BL] er Channel T ious Digital H pes, General DN, ATM Netv Systems- Asyn), High Data R is (VDSL); Ca otical Network roadband ove l; Cellular Con tion Characte ecurity– [8L] ent Protocol ng (RMON); ision Detectio bi, Matthew	s; Intranet and echnology an Hierarchy (SD Architecture vorks and App nmetric Digital ate Digital Sul ble Modem (S (PON)- Type r powerline. mmunications eristics, VSAT (SNMP); Man Network Th n; Security Sta	d Extranet Desi d Topologies; H), Next-Gene e, Advantages lications. I Subscriber Lines (Systems- Tech es, Advantages ; WiMAX; Sate Networks, Sate nagement Info reats and Se andards- IPSec, iku, "Introduc	gn Issues. Synchronoueration SON and Disacent nes (ADSL), S HDSL), Very nology, Extent and Disadva ellite Commit tellite Radio formation Ba curity Require DES.	us Optic ET (NGS dvantage Symmetr High Da ernal ar antages unicatio , Satelli use (MIE uirement						
		Internet and Extra Network X.25 and Network Virtual I Security I Access N Digital Su Digital Su Rate Dig Internal I TDM POR Wireless Types, C based Int Network Simple I Remote Cryptogr 1. (Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Typ Issues; ISDN and BISE etworks – [8L] ubscriber Line (DSL) S ubscriber Lines (SDSL gital Subscriber Line Modems; Passive Op Ns, Security Issues; Bu Networks – [8L] LAN; Wireless ATM Orbital and Propagat ternet. Management and S Network Manageme Network Monitorir aphy; Firewalls; Intru oks : Cajetan M Akujuol	standard; Void d Application BL er Channel T ious Digital H pes, General DN, ATM Netv Systems- Asyn), High Data R es (VDSL); Ca otical Network roadband ove l; Cellular Con tion Characte ecurity– [8L] ent Protocol ng (RMON); usion Detectio bi, Matthew ems", Boca Ra	s; Intranet and echnology an Hierarchy (SD Architecture vorks and App nmetric Digital ate Digital Sul ble Modem (SONMP)- Type r powerline. mmunications ristics, VSAT (SNMP); Man Network Th n; Security Sta ton, Fla. Chap	d Extranet Desi d Topologies; H), Next-Gene e, Advantages lications. I Subscriber Lines (Systems- Tech es, Advantages ; WiMAX; Sate Networks, Sat nagement Info reats and Se andards- IPSec, iku, "Introduo man & Hall/CR	gn Issues. Synchronoueration SON and Disacent Mes (ADSL), S HDSL), Very mology, Extent and Disadva ellite Commission tellite Radio formation Bacurity Requised DES.	us Optic ET (NGS dvantage Symmetr High Da ernal ar antages unicatio , Satelli unicatio , Satelli se (MIE uirement Groadbar C SciTec						
		Internet and Extra Network X.25 and Network Virtual I Security I Access N Digital Su Digital Su Digital Su Digital Su Rate Dig Internal I TDM POR Wireless Types, C based Int Network Simple I Remote Cryptogr 1. (2. L	Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Typ Issues; ISDN and BISE etworks– [8L] ubscriber Line (DSL) S ubscriber Lines (SDSL gital Subscriber Line Modems; Passive Op Ns, Security Issues; BI Networks – [8L] LAN; Wireless ATM Orbital and Propagat ternet. Management and S Network Managemen Network Monitorir aphy; Firewalls; Intru oks: Cajetan M Akujuol Communication Syste	standard; Void d Application BL er Channel T ious Digital H pes, General DN, ATM Netw Systems- Asyn), High Data R es (VDSL); Ca bical Network roadband ove l; Cellular Con tion Characte ecurity– [8L] ent Protocol ng (RMON); <u>usion Detection</u> bi, Matthew ems", Boca Ra gusto Casaca,	s; Intranet and echnology an Hierarchy (SD Architecture vorks and App metric Digita ate Digital Sul ble Modem (SONMP)- Type er powerline. mmunications eristics, VSAT (SNMP); Man Network Th n; Security Sta N O Sad ton, Fla. Chap "Broadband	d Extranet Desi d Topologies; H), Next-Gene e, Advantages lications. I Subscriber Lines (Systems- Tech es, Advantages ; WiMAX; Sate Networks, Sat nagement Info reats and Se andards- IPSec, iku, "Introduc man & Hall/CR Communicatio	gn Issues. Synchronoueration SON and Disacent Mes (ADSL), S HDSL), Very mology, Extent and Disadva ellite Commission tellite Radio formation Bacurity Requised DES.	us Optic ET (NGS dvantage Symmetr High Da ernal ar antages unicatio , Satelli unicatio , Satelli se (MIE uirement Groadbar C SciTec						
		Internet and Extra Network X.25 and Network Virtual I Security Access N Digital Su Digital Su Rate Dig Internal TDM PON Wireless Wireless Types, C based Int Network Simple M Remote Cryptogr 1. (2. L	Protocol Suite; IPv6 s anet Technologies an ing Technologies – [8 d Frame Relay; Fibe (SONET), Synchron Private Network-Typ Issues; ISDN and BISE etworks – [8L] ubscriber Line (DSL) S ubscriber Lines (SDSL gital Subscriber Line Modems; Passive Op Ns, Security Issues; Bi Networks – [8L] LAN; Wireless ATM Orbital and Propagat ternet. Management and S Network Manageme Network Monitorir aphy; Firewalls; Intru oks : Cajetan M Akujuo Communication Syste .orne G Mason, Aug	standard; Void d Application BL er Channel T ious Digital H pes, General DN, ATM Netv Systems- Asyn), High Data R es (VDSL); Ca otical Network roadband ove l; Cellular Con tion Characte ecurity– [8L] ent Protocol ng (RMON); ision Detection bi, Matthew ems", Boca Ra gusto Casaca, munication To	s; Intranet and echnology an Hierarchy (SD Architecture vorks and App metric Digital ate Digital Sul ble Modem (S (PON)- Type r powerline. mmunications ristics, VSAT (SNMP); Man Network Th n; Security Sta N O Sad ton, Fla. Chap "Broadband echnology, Sp	d Extranet Desi d Topologies; H), Next-Gene e, Advantages lications. I Subscriber Lines (Systems- Tech es, Advantages ; WiMAX; Sate Networks, Sate nagement Info reats and Se andards- IPSec, iku, "Introduc man & Hall/CR Communicatio ringer.	gn Issues. Synchronoueration SON and Disacent nes (ADSL), S HDSL), Very mology, Extra and Disadva ellite Commit tellite Radio ormation Ba curity Requind DES. ction to B C Raleigh, No	us Optic ET (NGS dvantage Symmetri High Da ernal ar antages unicatio , Satelli use (MIE irement Sroadbar C SciTec lvances						

COURSE ARTICULATION MATRIX

Mapping of CO (Course Outcome) and PO (Programme Outcome)

PO	РО	PO	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	PSO	PSO	PSO
CO	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	2	1	1	1	2	1	1	1	1	2	1	2	3	2	1
CO#2	2	2	2	2	2	1	2	1	1	3	1	2	3	2	2
CO#3	2	2	2	2	2	1	2	1	1	3	1	2	3	2	2
CO#4	2	2	2	2	3	2	3	2	1	2	2	3	2	3	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

	Dej	partment of Elect	ronics and	l Communi	ication Engir	neering						
Course	Title of the	Program Core	Tot	al Numbe	r of contact	hours =	42	Credit				
Code	course	(PCR) / Elective (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Tota	Hours					
ECE813	Digital Image Processing	PEL										
Prerequisite	es	Course Assessment methods (Continuous (CT), Mid-Term (MT), End Assessment (EA))										
Signals and (ECC 303), Digital Circu Systems (EC Digital Signa (ECC603)	uits and	The assessment involving real w google form or a	orld exam	ples, and s	ubjective qu	lestions						
Course Out	comes	 CO2: An CO3: Un segmen 	 CO1: Understand image enhancement and restoration techniques. CO2: Analyze digital images through multiresolution techniques. CO3: Understand the application of morphological processing and segmentation in digital images. CO4: Ability to interpret digital image recognition techniques. 									
•	ered mapped			c Details			<u>(No. of</u>	<u>Course</u>				
to Course C	outcomes	Sampling, Qua	between pixels, Geometric transforms, Convolution 4 CO#1									
		Image Enhance Histogram pro	Image Enhancement: Gray level intensity transforms,Histogramprocessing,Imagesharpeningsmootheningoperations(spatialandfrequency									
		Image Restoration: Model of image degradation, Noise models, Restoration in the presence of noise only spatial filtering, Periodic noise reduction by frequency domain filtering, Estimating the degradation function, Weiner filtering, Constrained6CO#1										
		least squares resampling.			-		6	CO#2,CO				

	Multi machatian Incara Duancaina. Chantaine Faunian	4						
	Multi-resolution Image Processing: Short time Fourier	4						
	transform, Wavelet function, Wavelet series, Discrete							
	wavelet transform and multi-resolution analysis,							
	Image decomposition and compression using discrete							
	wavelet transform. 5							
	Compression and Encoding of Image: Redundancy,	CO#1,						
	Entropy coding, Lossy compression, Lossless	CO#4						
	compression, Quality preserving adaptive							
	compression. 5							
	Morphological Processing: Dilation and erosion,							
	Opening and closing, Hit or Miss transform, 6	CO#3,						
	Algorithms for feature extraction.	CO#4						
	Image Segmentation: Detection of discontinuities,							
	Edge linking and boundary detection, Thresholding,	CO#3,						
	Region based segmentation, Segmentation by	CO#4						
	morphological watersheds, Use of motion in 4	0011						
	segmentation.							
	Patterns in Images and their Applications: Basics of							
	features, Principal component analysis, Decision tree							
	and feature hierarchy, Scale invariant feature	CO#4						
		0#4						
	transform, Histogram of oriented gradient.							
Text Books, and / or	Text Books:	-						
reference material	1. Digital Image Processing: R C Gonzalez and R E Woods;	Pearson						
	Education.							
	2. Guide to Signals and Patterns in Image Processing- Fou	ndations,						
	Methods and Applications: Apurba Das; Springer.							
	3. Digital Image Processing and Computer Vision: Sonka, H	llavac and						
	Boyle; Cengage Learning (India Edition).							
	Reference Books:							
	1. Digital Image Processing: K R Castleman; Pearson Education.							
	2. Digital Image Processing: S Sridhar; Oxford Higher Educ	ation.						

	-		-													
	Mapping of Course Outcome (CO) to Programme Outcome (PO) & Programme Specific Outcome (PSO)															
F	PO/PSO PO											PSO				
C	0	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	1	#2	#3
(CO#1	3	3	3	3	3	-	-	-	2	-	1	-	3	3	1
(CO#2	3	3	3	3	3	-	-	-	2	-	1	-	3	3	1
(CO#3	2	3	3	3	2	-	-	-	1	-	1	-	3	3	1
0	CO#4	2	2	3	3	3	-	-	-	2	-	1	-	3	3	1

Correlation levels 1, 2 or 3 as defined below:

	Departmer	nt of Electronics an	d Communi	ication Engin	eering								
Course	Title of the course	Program Core	Total	Number of o	contact hours	5 = 46	Credit						
Code		(PCR) /	Lecture	Tutorial	Practical	Total							
		Elective (PEL)	(L)	(T)	(P)	Hours							
ECE814	Error Control Coding	PEL	3	0	0	3	3						
Pre-requis	ites	Course Assessment methods											
		(Continuous (CT), mid-term (MT) and end assessment (EA))											
Digital Circu	uits and Systems	CT+MT+EA											
(ECC402),D	igital Communication												
(ECC501)	01)												
Course	CO1:Acquire idea about different types of error control coding techniques. CO2:Understand generator matrix, encoding and decoding of different codes.												
Outcomes	-		-	decoding of	different cod	les.							
		CO3:Learn LDPC, BCH, RS and Turbo codes.											
	-	CO4:Analyze and mitigate errors in channels.											
	CO5:Differentiate			-									
Topics		o Linear Algebra: G		-	•	7]2. Bina	ry Linear						
Covered	Block Codes : Gene	•											
	Decoding, General	•		-		[L-9]	_						
	3.Cyclic Codes: Alge	• •	•	•	•	es. [L-	7]						
		roperties, Encodin	-			r ,							
		(RS) Codes: Defini		-	-								
		odes: Definition, E	ncoding Tre	llis and State	representati	on, Viterbi							
	decoding, Error pro		ation Dear										
		Definition, Constru	-	lar and irregu	liar LDPC, Be		ition,						
	Tanner Graph, Deco	•	•	Deceding, C	alar and an	[L-4]							
Toyt Docks	8.Turbo Codes: Defi Text Books :	mition, construction	methods	, Decoding; P	olar codes.	[L-3]							
Text Books and/or	1.Shu Lin and Danie	L Costalla Ir Fre	or Control C	odina: Euroda	montals and	application	nce 2 nd						
reference	Ed., Pearson India,			ouniy, runuu	inentais ana	αρριτατιστ	IS. Z						
material	2.J. C. Moreira and		tials of Erro	r Control Cor	ling 1 st Ed W	Viley India	2006						
material	Reference Book:		uuis Uj EITU		шу, т си., v	viicy muid,	2000						
	Todd.K. Moon, Erro	r Correction Codin	a. Mathem	ntical Mothor	ds and Alacri	thm 1 st Ed \	Nilev						
	India, New Delhi, 20		g. widtheffit		is and Aigon	, LU.,	viicy						

COURSE ARTICULATION MATRIX

PO/PSO CO	PO #1	PO #2	PO #3	РО #4	PO #5	PO #6	PO #7	PO #8	PO #9	PO #10	PO #11	PO #12	PSO #1	PSO #2	PSO #3
CO#1	3	1	1	1	1	1	1	-	1	1	-	1	2	2	2
CO#2	2	2	2	2	1	-	-	-	-	-	-	1	3	2	2
CO#3	2	2	1	2	1	-	1	-	-	1	-	1	2	3	2
CO#4	3	1	3	2	2	-	-	-	-	-	-	1	3	2	2
CO#5	1	1	2	1	1	-	-	-	-	-	-	1	2	2	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

146 | Page

	Department	of Electronics and C	Communica	tion Engine	ering							
Course	Title of the course	Program Core	-		contact hours	5 = 42	Credit					
Code		(PCR) / Elective	Lecture	Tutorial	Practical	Total	5.0010					
		(PEL)	(L)	(T)	(P)	Hours						
ECE815	Embedded System	PEL	3	0	0	0	3					
	Design											
Pre-requisi	-	Course Assessme	ent method	s: (Continu	ous Assessm	ent (CA), I	Mid-					
		semester assessm	nent (MA) a	and End Ass	essment (EA	.)):						
Basic Electr	onics (ECC01),	Assignments, Qu	iiz/class tes	t, Mid-seme	ester Examin	ation and	End					
Introductio	n to Computing	Semester Examination										
(CSC01),												
-	its and Systems											
(ECC402),												
Microproce												
	ollers (ECC503)											
Course		pletion of the cours										
Outcomes		and use of Micropro					ter					
		e I/O devices with M	Aicroproces	sor in Micro	ocontrollers	and						
	Microcompute											
		oftware-controlled		•								
T		ate application spec		ded system	S							
Topics		el 8051 Microcontro			a alua Conveta l							
Covered		el 8051 Microcontro	-		•							
	8051 Microcontroll	ital I/O ports, 8051	wiicrocontr	oller progra	ammer, iimit	ations of	Intel					
		er. mega Microcontrol	lors and Ar	duino[1_4]								
		nega Microcontrolle			ocks Hardwa	re compo	nents of					
		C, Analog input pin	-			•						
		s, Arduino shields, I	· •	•	-	•	ena					
	Arduino.	<i>5,7</i> (100110 5110105,1	Linnations	ormega								
		spberry Pi Micro-Co	omputer	[L-4]								
	ARM processor, Ha	• •	•		o-computer,	GPIO pins	in					
	Raspberry Pi board	, PWM signals, Rasp	berry Pi OS	, 5, In-built da	ata communi	ication de	vices,					
	Limitations of Rasp	berry Pi Micro-Com	puter.									
	Module IV: I/C	devices for Micro	controllers	and Micro	computers	[L-5]						
	Sensors, Resistive s	ensors, Capacitive s	sensors, Ind	luctive sens	ors, Actuato	rs, Motors	s, Signal					
	conditioning circuit	s, Amplifiers, Filters	s, Display el	ements, Da	ta storage d	evices,						
	Compatibility of sev					nega						
		nd Arduino, Raspber	•	•								
		bedded System Pro		-	[L-7]							
		piler, Keil Program	-			-						
		Microcontroller, I/C		-		-						
		ors with Intel 8051			upt program	ming in 8	051,					
		element interfacin	-		la le er e	- r1						
		bedded System Pro		-			board					
	Arduino editor and	•	-									
l I		nterfacing Analog a	-									
		d Data transmission element interfacin			orogramming	s in Arauli	10,					
		bedded System Pro	-		on[1_7]							
		thon programming				hae and						
		anon programming	, incriacing			5515 8110						

	actuators with Raspberry Pi, I/O programming in Raspberry Pi, Serial communication and Data transmission in Raspberry Pi, Interrupt programming, Keypad and Display element interfacing with Raspberry Pi.Module VIII:Case studies[L-4]Application specific embedded system design using 8051 Microcontroller, Arduino, Raspberry Pi, Password lock device using Embedded system, Smart home using embedded
	system, Motor controller using Embedded system
Text Books, and/or reference material	 Text Books: 1. T. Givargis, F. Vahid , <i>Embedded System Design: A Unified Hardware / Software Introduction</i>, Wiley; Student edition, 2006 2. E. A. Lee, S. A. Seshia, <i>Introduction to Embedded Systems - a Cyber Physical Systems</i>
	 Approach, PHI Learning Pvt Ltd, MIT Press; Second edition, 2019 M. A. Mazidi, <i>The 8051 Microcontroller and Embedded Systems: Using Assembly and</i> C, Pearson Education India; 2nd edition, 2007
	 Reference books: 1. J. Bentley, <i>Principles of measurement systems</i>. Pearson Education India; 3rd edition, 2002
	2. T. W. Schultz, <i>C and the 8051, Vol.I: Hardware, Modular Programming & Multitasking,</i> Prentice Hall; 2nd edition, 1997
	3. S. Monk, <i>Programming Arduino: Getting Started with Sketches</i> , Second Edition, McGraw-Hill, 2nd edition, 2016
	4. J. Yiu, <i>The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors</i> , Newnes; 3rd edition, 2013
	5. S. Monk, <i>Raspberry Pi Cookbook: Software and Hardware Problems and Solutions</i> , Shroff/O'Reilly; Second edition, 2016
	 6. D. Molloy, <i>Exploring Raspberry Pi: Interfacing to the Real World with Embedded Linux</i>, Wiley; 1st edition, 2016
	7. Research Articles

COURSE ARTICULATION MATRIX

Mapping CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)

PO/PSO	PO	РО	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PSO	PSO	PSO
CO	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	-	-	-	-	2	-	-	-	-	-	-	3	-	-
CO#2	3	1	-	-	-	-	-	-	-	-	-	-	3	-	-
CO#3	1	3	-	1	-	-	-	-	-	-	-	-	3	2	-
CO#4	1	1	-	3	-	2	-	-	-	-	-	-	3	1	-

Correlation levels 1, 2 or 3 as defined below:

	Department of Electronics and Communication Engineering												
Course	Title of the course	Program	Total	Number of a	contact hours	5 = 50	Credit						
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total							
		Elective (PEL)	(L)	(T)	(P)	Hours							
ECE816	RF and MMIC	PEL	3	0	0	3	3						
Pre requisit	ce de la constante de la consta		Course Assessment methods: (Continuous Assessme										

		(CA), Mid-semester assessment (MA) and end assessment (EA)):								
(ECC403), Electronic Dev (ECC302, ECC5	tic Theory and Transmission Lines ices and Circuits I and II i04), gineering (ECC502)	Assignments, Quiz/class test, Mid-semester Examination and End Semester Examination								
Course		t of GaAs, InP and SiGe, technologies and able to describe								
Outcomes	all the key techniques for the d									
Outcomes	• CO2: Understand circuit design circuit design for transceiver	issues at RF and microwave frequencies for integrated								
Topics	 ◆CO3: Assimilate the characterization of RF and microwave monolithic integrated circuits Introduction to RFIC and MMIC: [L – 6] 									
Topics Covered	Introduction to microwave integrated circuit (MIC), RF, microwave, mm wave and sub mm wave spectrum, history, applications and technology of MMICs Advantages and disadvantages of MMIC; enhancement of device technology that have contributed to RGIC and MMIC; Transceiver architectures, concept of IIP, nonlinearities, dynamic range and system noise									
	Review of Transmission line theory. Concept of Scattering Matrix[L – 4] N-port networks-Properties of S matrix, Transmission matrix and their relationships Microwave and mm wave Waveguide and Resonators [L – 4]									
	Rectangular Waveguide- design consideration, TE and TM modes, TE_{10} mode analysis, cut-off frequency, propagation constant, intrinsic wave impedance, phase and group velocity, power transmission, attenuation, waveguide excitation, wall current; Introduction of circular waveguide; Rectangular waveguide resonator design consideration, resonant frequency, Q- factor, excitation. Planar Transmission lines and Resonators [L – 4] Propagation characteristics, comparison for different characteristics of the above mentioned									
	lines. strip line, micro-strip line, coplanar waveguide, Slot line-design consideration, Substrate integrated waveguide, non radiating dielectric guides, Design synthesis and analysis									
	 Passive Components and their S-matrix Representation [L – 6] Microwave and mm wave passive components and their S matrix representation: Attenuators, Phase shifter, Directional coupler, Bethe-hole coupler, magic tee, hybrid ring, circulators, Isolators; design of planar power dividers and couplers; design procedure of filter using insertion loss method-specification, low-pass prototype design, scaling and conversion, implementation. 									
	Devices for RFIC and MMIC [L – 4 CMOS, SOICMOS, GaAs, GaN and	-								
	Amplifier Design [L – 6] Basic consideration in the design of microwave amplifier- transistor S-parameter, Stability, matching network, noise figure; matching network design using lumped elements and L- Section. Five major MMIC amplifier topologies: the reactively matched amplifier, the lossy match amplifier, the feedback amplifier, the distributed amplifier and various forms of actively matched amplifier; design of low noise and high power amplifiers Oscillator , Mixer, Switches, Attenuator and Phase Shifter [L – 8]CAD techniques for large- signal oscillator design; phase noise; MMIC VCO design; and MMIC injection-locked oscillator design, analysis of mixer circuits; diode mixers; coupling structures; active FET mixers; resistive FET mixers; image-rejection mixers; single-sideband mixers; sub- harmonically pumped mixers; and distributed FET mixers.GaAs FET switch mechanism and the development of an equivalent circuit for switching operation; different schemes for the									

	realization of GaAs MMIC variable attenuators; MMIC phase shifters, implemented under											
	either analogue or digital control.											
	Integrated Antenna:[L-4]monolithic integrated antennas; integrated antenna selection;											
	substrate choice; measurement issues; packaging; photonic bandgap antennas;											
	micromachined antennas, including trench and cavity etching; and microelectromechanical											
	systems antennas											
	Microwave and mm wave measurement basics [L – 4]											
	VSWR meter, tunable detector, slotted line and probe detector, spectrum analyzer, network											
	analyzer, measurement of VSWR – low, medium and high, measurement of power: low,											
	medium and high, frequency measurement.											
Text Books,	Text Books:											
and/or	1. I D Robertson; S Lucyszyn, RFIC and MMIC design and technology, IET circuits, devices											
reference	and systems series, 13											
material	2. SorinVoinigescu, <i>High Frequency Integrated Circuits</i> , Cambridge UniveityPress,UK,											
material	2013G											
	3. R Ludwig and P Bretchko, <i>RF Circuit Design: Theory and Application</i> , Pearson Education,											
	New Delhi.											
	4. David. M. Pozar, <i>Microwave Engineering</i> , 2/e, 1998 (John Wiley & Sons).											
	5. H Bryant, Principles of microwave Measurement, London : P. Peregrinus Ltd. on behalf											
	of the Institution of Electrical Engineers, c1988											
	Reference Books:											
	1. P A Rizzi, Microwave Engineering: Passive Circuits, 2000, PHI											
	2. R E Collin, Foundations of Microwave Engineering, John Wiley and Sons India Pvt.											
	Ltd.											

COURSE ARTICULATION MATRIX

Mappir	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO CO	PO #1	PO #2	PO #3	РО #4	PO #5	PO #6	PO #7	PO #8	PO #9	РО #10	PO #11	PO #12	PSO# 1	PSO# 2	PSO# 3
CO#1	2	1	2	1	2	2	1	1	1	1	1	1	2	1	1
CO#2	3	2	2	2	2	2	1	1	1	2	1	1	2	1	1
CO#3	3	2	3	1	1	2	1	1	2	2	2	1	3	3	2

Correlation levels 1, 2 or 3 as defined below:

	Depa	rtment of Electro	onics & Comm	nunication Eng	gineering		
Course Code	Title of the course	Program Core (PCR) / Elective (PEL)	Tota Lecture (L)	l Number of c Tutorial (T)	ontact hours = Practical (P)	42 Total Hours	Credit
ECE817	Design with Op-Amp & Analog Int. Circuits	PEL	3	0	0	3	3
Pre-requisite:	S			erm Assessm	hods: (Continu ent (MA) and I		nent

Electronic De (ECC302, EC	evices and Circuits I and II CA comprises of : Assignment(s), Quiz(zes) /Class test(s)										
(ECC302, EC Course	After the completion of the course the student will be able to										
Outcomes	• CO1: Define various parameters/terms associated with Operational Amplifier.										
	• CO2 :Describe the internal structure of an Opamp using functional blocks										
	CO3: Design Adder/Subtractor/Integrator/Differentiator using Opamps										
	 CO4:Define Slew rate and estimate settling time. 										
	• CO5: Explain the operation of a DAC.										
	 CO6:Analyze the operation of an ADC. 										
Topics	Module I. Introduction to Operational Amplifier [L – 7]										
Covered	Basic Op-amp characteristics, DC characteristics, Unity Gain Frequency, CMRR, PSRR, offset										
	voltages and currents, Input and output impedances, Slew rate and Frequency limitations. Ideal opamp circuit analysis. Amplifiers: inverting/non-inverting, Summing amplifiers, and Difference amplifiers. Integrator and differentiator. Understanding negative feedback, concept of virtual short.										
	Module II. OpAmp Circuits [L – 6]										
	Current to Voltage and Voltage to Current converters, Current Amplifiers, Difference										
	Amplifiers, Instrumentation Amplifiers. Log/Antilog Amplifiers, Transducer bridge Amplifier Module III. Active Filters [L – 7]										
	Filter classification and transfer functions, First order active filters, Audio filter application										
	Second order filter responses, KRC filters, State variable and bi-quad filters. Sensitivity. Filte approximations, Cascaded design										
	Module IV. Non liner Circuits using OpAmp [L – 6]										
	Voltage comparators and applications, Schmitt Trigger, Precision rectifiers, Peak detectors,										
	Sample and Hold amplifiers. Mutivibrators, Triangular wave generators, V to F and F to V										
	converters										
	Module V. Voltage references and Regulators [L – 6]										
	General performance considerations, Voltage references, Linear regulators and Switching regulators Voltage mode control and current mode control.										
	Module VI. Data Converters [L – 7]										
	Performance specifications, Digital to Analog Conversion techniques, Multiplying digital t										
	analog converter applications. Analog to Digital Conversion techniques, Flash, SAR, Dua										
	slope ADC operation.										
	Module VII. Phase Locked Loop[L – 3]										
	Basic operation of PLL, Block diagram, performance parameters, applications.										
Text	Text Book:										
Books,	1. Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits										
and/or	McGraw-Hill, 2017.										
Reference	Reference Book:										
materials	1. Ramakant A Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson, 4th Editio 2015.										

COURSE ARTICULATION MATRIX

Mappi	ng of C	O (Cou	rse Ou	tcome)	to PO	(Progr	amme	Outco	me) ar	nd PSO	(Prog	amme	Specific	Outcom	ne)
PO/PSO	РО	РО	PO	PO	PO	PO	РО	PO	РО	РО	РО	РО	PSO#	PSO#	PSO#
СО	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	1	2	3
CO#1	2	1	3	3	1	1	1	1	1	1	1	2	2	2	1
CO#2	3	2	2	1	1	1	1	1	1	1	1	1	2	1	1
CO#3	3	2	3	1	1	1	1	1	1	1	1	1	2	3	2

CO#4	1	2	3	2	1	1	1	1	1	1	1	1	3	3	2
CO#5	1	3	1	2	1	2	2	1	1	1	1	1	2	2	2
CO#6	3	2	2	2	1	1	1	1	1	1	1	1	2	3	2

Correlation levels 1, 2 or 3 as defined below:

	Departme	nt of Electronics	and Comm	unication Er	gineering						
Course	Title of the course	Program	Total I	Number of c	ontact hours	= 46	Credit				
Code		Core (PCR) / Elective (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours					
ECE818	Satellite Communication	PEL	3	0	0	3	3				
Pre-requisit	es	Course Assessment methods (Continuous (CT), Mid-Term (MT) and End Assessment (EA))									
Transmissic Microwave (ECC502),Au Communica	netic Theory and n Lines (ECC403), Engineering nalog and Digital tion(ECC401, tennas and Wave n (ECC601)	Assignments, Mid Semester and End Semester Examination									
Course Outcomes	CO#2 Understand CO#3 Can do con	ed on Kepler's si d the concept of nputations of lin nmunication. the concept of n	x elements. satellite lau nk design ar nultiple acce	inching and nd classify d essing techn	positioning c ifferent losse iques in sate	of satellites es in propa llite comm	in orbits gation for unication.				

Topics Covered	 Introduction Basic concepts, Frequency allocation for satellite services, orbital & spacecraft problems, comparison of networks and services, modulation techniques used for satellite communication. Spectrum Management[L-4] Orbits Two body problems, orbital mechanics, geostationary orbit, change in longitude, orbital manoeuvres, orbital transfer, and orbital perturbations. Launch Vehicles- principles of Rocket propulsion, powered flight, Lauch vehicles for communication satellite [L-10] Satellite subsystems and satellite link design Altitude and orbit control (AOC) Subsystem, TT&C, power system, spacecraft antenna, transponder, Friis transmission equation, G/T ratio of earth station.[L-8] RF link- noise, the basic RF link, satellite links (up and down), optimization RF link, inter satellite link, noise temperature, Antenna temperature, overall system temperature, propagation factors, rain attenuation model. Tropospheric and Ionospheric effect.[L-8] Multiple access FDMA, TDMA, CDMA techniques, comparison of multiple access techniques, error connecting codes.[L-8] Application of satellite in remote sensing and surveillance; Basic of remote sensing, Electromagnetic Radiation principles, Atmospheric window, Indian satellite sensing satellite system, Active, Passive, ground based and space based remote sensing. [L-8] Text Books: 									
Text Books, and/or reference material	 Text Books: [1] Dennis Roddy, Satellite Communication, 4/e, McGraw Hill [2] Pratt and Bostian, Satellite Communication, 2/e, John Wiley and Sons. [3] Louis J. Ippolito, Jr.Satellite Communications Systems Engineering: Atmospheric Effects, Satellite LinkDesign and System Performance, Second Edition, John Wiley. Reference Books: [4] Recommendation ITU-R P.618-11, P Series Radio Wave Propagation. [5] Floyd F. Sabins, Remote Sensing: Principles and Interpretation, 3rd edition (August 1996), W H Freeman & Co. [6] Tri T Ha, Digital Satellite Communication, McGraw Hill 									

Mapping	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO CO	PO #1	PO #2	PO #3	РО #4	PO #5	PO #6	РО #7	PO #8	РО #9	PO# 10	PO #11	PO# 12	PSO# 1	PSO# 2	PSO# 3
CO#1	2	1	2	1	2	2	1	1	1	1	1	1	2	1	1
CO#2	3	2	2	2	2	2	1	1	1	2	1	1	2	1	1
CO#3	3	3	3	1	1	2	1	1	2	2	1	1	3	3	2
CO#4	1	2	2	1	1	2	2	1	2	1	1	1	3	3	2
CO#5	2	3	1	2	1	1	1	2	2	1	1	1	2	1	2

Correlation levels 1, 2 or 3 as defined below:

	Departmer	t of Electronics and	Communica	ation Engine	ering									
		Program Core	1	-	contact hours	5 = 46								
Course	Title of the course	(PCR) / Elective	Lecture	Tutorial	Practical	Total	Credit							
Code	The of the course	(PEL)	(L)	(T)	(P)	Hours	create							
		PEL	(۲)	(')	(1)	nours								
ECE819	RFIC Design		3	0	0	3	3							
Pre-requis	ites	Course Assessmen	t methods:	(Continuous	s Assessment	t (CA), Mio	J-							
		semester assessme	ent (MA) an	d end asses	sment (EA))									
Analog and	Digital	Assignments, Quiz/class test, Mid-semester Examination and End												
Communica		Semester Examina	tion											
(ECC401, EC	•													
-	Systems (ECC303),													
-	esign (ECE712)													
Course	After going throu	igh the course, stud	ent will be a	able to										
Outcomes	CO1: Analyze	e various architectur	es of today	's digital rad	lio transmitte	ers and re	ceivers.							
	CO2: Analyze	e and design basic RI	F building-b	locks in CM	OS technolog	gy.								
	• CO3: Define	basic RF measureme	ents parame	eters such a	s S-paramete	ers, sensiti	vity,							
	noise figure,	IIP3												
	• CO4: Assimilate the design techniques VCO, LNA as well as other front-end circuit													
Topics	Module-I: Introd	Module-I: Introduction to RF IC Design Concepts [L – 6]												
Covered/	Basic Concepts in	Basic Concepts in RF Design, passive on chip components and layouts, transceiver												
Syllabus	architectures, circuit analysis techniques at radio frequencies.													
	Module-II: Semic	onductor radio freq	luency com	ponents [L ·	- 8]									
	RF diodes, MOS t	RF diodes, MOS transistor, determination of model parameters, parasitics of MOS												
	transistors and h	igh frequency behaviour of basic amplifier.RF Transistor Materials – The												
	Transistor Equiva	lent Circuit – Y Para	meters – S I	Parameters	– Understan	ding RF Tr	ansistor							
	Data Sheets; BSIN	A3 parameters of NI	MOS and PN	NOS transist	tors, matchir	ng and bia	sing							
	networks for trar	sistors												
	Module-III: Noise	e and non-linearity.	[L-4]											
	Noise Figure and	representation of ne	on-linearity	, intermodu	lation produ	cts and in	tercept							
	points													
	Module-IV: Filter	⁻ Design [L – 4]												
	Resonator and fil	ter configurations, r	ealization o	f filter for s	pecific transf	er functio	n,							
	implementation	of filters a coupled li	ne filter.											
	Module V:RF Tra	nsistor Amplifier[L -	- 8]											
	Stability consider	ation, constant, gair	n and noise	figure circle	s. Low Noise	Amplifier	s: SNR,							
	LNA topologies, p	ower constrained C	MOS LNA d	esign, low-c	urrent CMO	S inverter	LNAs,							
	low-voltage LNA	topologies, different	tial LNA des	ign method	ology, proces	ss variatio	n in							
	tuned LNAs, impa	act of temperature v	variation in t	tuned LNAs,	low-noise b	ias netwo	rks for							
	LNAs, MOSFET la	yout of LNA.												
	Module-VI: RF M	lixers [L – 6]												
	Basic design cond	epts, single end dio	de mixer sir	ngle balance	d and double	e balance	d diode							
	mixer design. Tra	nsistor mixers, , con	version loss	5.										
		odule-VII: RF Oscillators [L – 6]												
		Phase Noise, negativ												
	-	ogy, frequency scali	ng of CMOS	VCO, VCO I	ayoutPhase	lock loops	,							
		frequency synthesizers												
	-	Module-VIII:RF power amplifiers [L – 4]												
		D, E and F amplifiers	s, modulatio	on of power	amplifiers, li	nearity								
	considerations													

Text Books,	Text Books:
and/or	1. R Ludwig and P Bretchko, RF Circuit Design: Theory and Application, Pearson Education,
Reference	New Delhi.
material	2. SorinVoinigescu, <i>High Frequency Integrated Circuits</i> , Cambridge UniveityPress, UK, 2013.
	Reference Books:
	1. BehzadRazavi, RF Microelectronics Prentice Hall of India, 2001
	2. Thomas H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge
	University Press.

COURSE ARTICULATION MATRIX

Маррі	Mapping of Course Outcome (CO) to Programme Outcome (PO) and Programme Specific Outcome (PSO)														
PO/PSO CO	PO #1	PO #2	PO #3	PO #4	PO #5	PO #6	PO #7	PO #8	PO #9	PO# 10	PO #11	PO #12	PSO# 1	PSO# 2	PSO# 3
CO#1	2	1	2	1	2	2	1	1	1	1	1	1	2	1	1
CO#2	3	2	2	2	2	2	1	1	1	2	1	1	2	1	1
CO#3	3	3	3	1	1	2	1	1	2	2	1	1	3	3	2
CO#4	1	2	2	1	1	2	2	1	2	1	1	1	3	3	2

Correlation levels 1, 2 or 3 as defined below:

	Departm	ent of Electronics a	nd Communica	ation Engine	ering								
	Title of the	Program Core	Total Nu	umber of co	ntact hours =	42							
Course Code	course	(PCR) / Elective	Lecture	Tutorial	Practical	Total	Credit						
	course	(PEL)	(L)	(T)	(P)	Hours							
	Low Power												
ECE820	Circuits and	PEL	3	0	0	3	3						
202020	Systems		-	Ū.	,	_	•						
		Course Assessment methods: (Continuous Assessment (CA:15%), Mid-											
Pre-requisites	5	Term Assessment	Term Assessment (MA:25%) and End-Term Assessment (EA:60%))										
Electronic Dev	ices	Continuous Assessment (CA): Quizzes/Class tests/Assignments/Attendance											
and Circuits I (
VLSI Design (E	CC602)												
	• CO 1:	earn to design and optimize CMOS logic circuits and extract parasitic											
Course Outco	mes element	ts.											
		Inderstand source	•	ssipation ar	nd be able t	o estimat	e energy						
		ion in typical circuit											
	• CO 3: A	oply different tech	niques to minir	nize dynami	c dissipation								
	• CO 4:	Learn the differer	nt sources of	leakage in	MOS transi	stors and	l how to						
	minimiz	e leakage dissipation	on at the device	e level as we	ell as in circui	it design.							
Syllabus/	Module-I:(L	,											
Topics Covere		Introduction: Need for Low power VLSI chips, MOS Transistor structure and device											
		model, The CMOS inverter and other gates; why CMOS for Low Power? CMOS Logic											
	design meth	odology, Circuit op	timization for ا	performanc	e.								
	Module – II:	(L – 06)											

	CMOS layout and Fabrication: Typical CMOS circuit layout, IC fabrication overview,											
	CMOS process flow, Imperfections in fabrication steps, Design rules and their											
	importance; MOS device details – parasitic elements and their estimation, importance											
	of device scaling.											
	Module – III: (L- 06)											
	Power dissipation mechanisms in CMOS circuits: Static and Dynamic dissipation,											
	Dynamic power dissipation – switching loss, short circuit dissipation, concept of											
	switching activity; Concept of signal activity, signal probability and activity, Signal											
	activity computation – Boolean difference, estimation of probability and activity in											
	complex logic circuits;											
	Module – IV: (L – 08)											
	Dynamic dissipation management –Supply voltage scaling approaches: Static Voltage Scaling; Single-level Voltage Scaling (SVS), Speed vs dissipation, Speed management											
	approaches, circuit level – Transistor sizing, Architecture level – Parallel and pipeline											
	architectures, Algorithm level transformations; Static Voltage Scaling Design Procedure,											
	Critical path and its management; Multi-level Voltage Scaling (MVS), MVS issues –											
	Layout, Level converters, Power up/down sequencing; Dynamic Voltage Scaling;											
	Dynamic Voltage and Frequency Scaling (DVFS), DVFS architecture.											
	Module-V: (L – 06)											
	Dynamic dissipation management – Switched capacitance minimization approaches:											
	What is switched capacitor? Switched capacitor minimization techniques –											
	Hardware/Software trade-off, Bus Encoding, Use of Number system, Glitching Pov											
	minimization, Architecture Level Optimization, Clock gating, State Encoding of FSM's.											
	Module-VI: (L – 06)											
	MOS Transistor revisited: Review of quantum theory of solids, concept of quantum											
	mechanical tunneling, Leakage mechanisms in MOS transistor - diode leakage,											
	sub-threshold current, sub-threshold swing; short channel effects - Gate tunneling,											
	reducing gate tunneling – high-k technology, DIBL and GIDL effects; Recent advances in											
	MOS transistor design – SOI technology, FinFET, Gate All Around (GAA) FET. Module-VII: (L – 03)											
	Static Power Optimization Techniques: Comparison of static and dynamic loss in											
	modern chips; Stand-by and Run-time leakage; Stand-by leakage reduction techniques, Transistor stacking, VT CMOS approach, Power gating, MT CMOS technology, Power											
	gating issues, DVFS with Power gating; Run-time leakage reduction, Dynamic V_{DD}											
	scaling, Dual V _t approach, V _t hopping.											
	Module-VIII: (L – 02)											
	Battery operated system design: Battery construction and working principle, Battery											
	capacity and energy density, comparison of different storage cell technologies; Battery											
	charging and discharging profiles and their effects on battery capacity and life; Design											
	of multi-battery system installations.											
Text Books,	Text Books:											
and/or reference	1. Ajit Pal, "Low Power VLSI Circuits and Systems", Springer, 2015.											
material	2. Kaushik Roy and Sharat C Prasad, "Low Power CMOS VLSI circuit Design", John											
	Wiley and Sons, 2000.											
	Reference Books:											
	 Anantha P Chandrakasan and Robert W Brodersen, "Low Power Digital CMOS Design", Kluwer Academic Publishers, Holland, 1995. 											
	 Construction of the second seco											
	Publishers, 1998.											
	3. Kuo J B and Lou J H, "Low Voltage CMOS VLSI Circuits", John Wiley and Sons,											
	Singapore, 1999.											
L												

COURSE ARTICULATION MATRIX

Mappi	Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)														
PO/PSO	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO#	PSO#	PSO#
со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	1	2	3
CO#1	2	1	3	2	2	1	1	1	1	1	1	2	2	2	1
CO#2	2	3	2	1	1	1	1	1	1	1	2	1	2	2	1
CO#3	3	3	3	2	1	1	1	1	1	1	1	1	3	3	2
CO#4	3	2	3	2	1	1	1	1	1	1	1	1	3	3	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

	Departmen	t of Electronics and (Communica	ition Engine	ering							
Course	Title of the course	Program Core	Total N	Number of o	contact hours	5 = 42	Credit					
Code		(PCR) /	Lecture	Tutorial	Practical	Total						
		Elective(PEL)	(L)	(T)	(P)	Hours						
ECE821	Advanced Antenna	PEL	3	0	0	3	3					
	Synthesis											
Pre-requisi	tes	Course Assessmer		· · · · ·		()						
		(Continuous (CT), mid-term (MT) and end assessment (EA))										
-	gnetic Theory and											
	on Lines (ECC403), nmunication											
(ECC401),	IIIIuiiicatioii											
• •	nmunication			CT+MT+EA	ł							
(ECC501),												
	nd Wave Propagation											
(ECC601)												
Course	• CO 1: Ability	to characterize res	onance and	I radiation	property of	an antenr	na based					
Outcomes	on applicatio	n										
	• CO 2: Learn	various design para	ameters that	at affects a	n antenna a	nd anten	na array					
	patterns.											
		stand different types of antenna based on the radiation mechanism like										
		, aperture antennas										
		stand different types			•		•					
	-	enna, log spiral a	ntenna and	d electrica	lly long ant	enna as	well as					
	electrically sr	e and synthesize diff	oront typo	ofantonna	os for difforo	at wireles	r.					
	communicati		erent types			it wireles	5					
Topics		f review on antenna	a fundamer	tals [L – 4]								
Covered		nentals; Vector pot			of the vecto	or potenti	al wave					
		na theorems and def				•	_					
	-	enna Array design a		erization [L	- 6]							
	Linear, planar an	d circular array - the	orems and	pattern syn	thesis.							
		gral Equations[L – 4	-									
		l, self and mutual im	•									
		nning antennas [L –	-			_						
	Signal processing	g antennas, travellir	ng wave an	d broadbar	nd antenna;	Concept	of smart					

	antennas. Module V. Microstrip antennas [L – 8] Operating principle, modes, field patterns, impedance, feeding techniques and polarization; Arrays and feed networks. Module VI. Aperture antennas [L – 6] Huygen's principle, Babinet's principle; Fourier transform theory and its applications; The Geometrical theory of diffraction and uniform theory of diffraction techniques and their applications. Module VII. Antenna measurements[L – 6]
	Antenna ranges, Impedance Measurements, Radiation Patterns, Gain Measurements, Directivity Measurements, Radiation Efficiency, Current Measurements, Polarization Measurements.
Text Books, and/or reference material	 Text Books: [1] C. A. Balanis, Antenna Theory : Analysis and Design, 3rd ed., John Wiley & Sons, Hoboken, New Jersey, 2005 [2] John D.Kraus, Ronald J.Marhefka "Antennas: for all Applications" 4th ed.,, Tata McGraw- Hill Inc., New Delhi, 2006. Reference Books: [1] E C Jordan and K G Balmain, Electromagnetic Waves & Radiating Systems, 2nd ed., Pearson, New Delhi, 2015 [2] R. C. Johnson and H. Jasik, "Antenna Engineering handbook", 3rd ed., Mc-Graw Hill Inc., New York, 1993. [3] I. J. Bhal and P. Bhartia, "Micro-strip antennas", Artech house, Dedgham, MA, 1980. Online Reference Material(s): https://nptel.ac.in/courses/117107035/

Mapping CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)

PO/PSO	PO	PO	PO	PSO	PSO	PSO									
СО	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	2	1	2	1	1	2	1	1	1	-	-	2	2	2	1
CO#2	3	2	2	1	1	2	1	1	1	-	-	1	2	1	1
CO#3	3	3	1	1	1	-	-	-	-	-	-	1	3	1	1
CO#4	1	2	1	1	1	3	2	1	1	-	1	1	3	1	2
CO#5	2	3	2	2	1	1	1	1	1	-	1	2	2	3	2

Correlation levels 1, 2 or 3 as defined below:

	Depa	rtment of Electr					
		Program	Tota	l Number of c	ontact hours =	: 42	
Course Code	Title of the course	Core (PCR) / Elective (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	Credi
	DSP	. ,					
ECE822	Architectures in VLSI	PEL	3	0	0	3	3
Pre-requisite	es		(Continuou	essment metl Is Assessment rm assessmer	: (CA), Mid-teri	n assessme	nt (MA)
VLSI Desigr Digital Sign	n (ECC602), al Processing (EC	C603)	CA compri	ses of : Assigr	iment(s), Quiz(zes) /Class	test(s)
Course	After the com	pletion of the co	ourse, the stu	dent will be a	ble to:		
Outcomes	CO 1: State	VLSI design met	hodology for	signal proces	sing systems.		
		ibe VLSI algorith					
		ment/Simulate			-	CAD tools.	
		ze DSP architect		•			
		ss various issues			•	-	
	-	thms in real har		nite resource:	s such as proce	essing speed	l,
Topics	Module I.	ory, and bit reso Introduction to		Processing	[]_6]		
	Module II. Introduction for Graphical represent critical path, det at Logic Level computing iterat Module III. DSP Systems, F time systems, structures, arrat Parallel and pip and power, a integrated circu Module IV. Methodology of	requency respor Digital Signal P r DSP algorithm sentation of DS ependence grap and architectura ation bound Introduction to Parallel and pipe latency and the ay architectures belining for Low synchronous a atits) and ASISP (a Systolic Array A f systolic array a multiplication of Signal processi	rocessing Alg ns: VLSI Desig P algorithms h (DG). Data al Design, Lo DSP systems eline of signa hroughput ro ; Pipelining y power design nd low pov application-sp Architecture [architecture, f systolic arra	gn flow, Mapg – signal flow g path synthes op bound an s [L – 5] al processing elated issues processing of gn, Optimizat ver system becific instruc [L – 6] FIR based Sys y. ures [L – 7]	ping algorithm graph (SFG), da is, control stru- id iteration bo application: A , clocking stru- Digital filter, ion with refer design, ASIC tion-set proces stolic Array, Se	ata flow gra ctures, Opt ound, Algor rchitecture ategy, pow Parallel pr ence to sp (applicatio ssors) desig	ph (DFG imizatio ithms fo for rea rer-awar rocessing eed, are n-specifi n.

Text	Text Book:
Books,	Keshab K. Parhi, "VLSI Digital Signal Processing Systems, Design and Implementation",
and/or	Wiley-Interscience, 1999.
Reference	Reference Book:
materials	1. Uwe Meyer-Baese, "Digital Signal Processing with Field Programmable Gate Arrays",
	Springer, Third Edition, 2007.
	NPTEL/SWAYAM/Other Video Lectures:
	1. Prof. N. Chandrachoodan, IITM, (2019) <u>Mapping Signal Processing Architectures in</u>
	<u>VLSI</u>

COURSE ARTICULATION MATRIX

Марр	ing of (CO (Cou	urse Ou	utcome	e) to PC) (Prog	ramm	e Outc	ome) a	nd PSO	(Progra	amme	Specific	Outcom	e)
PO/PSO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	PSO#	PSO#	PSO#
со	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	1	2	3
CO#1	2	1	3	3	1	1	1	1	1	1	1	2	2	2	1
CO#2	3	2	2	1	1	1	1	1	1	1	1	1	2	1	1
CO#3	3	2	3	1	1	1	1	1	1	1	1	1	3	2	2
CO#4	1	2	3	2	1	1	1	1	1	1	1	1	3	3	2
CO#5	2	3	2	2	1	2	2	1	1	1	1	1	2	2	2

Correlation levels 1, 2 or 3 as defined below:

	Departn	nent of Electron	ics and Comn	nunication Er	ngineering						
Course	Title of the	Program	Total	Number of co	ontact hours	= 43	Credit				
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total					
		Elective	(L)	(T)	(P)	Hours					
		(PEL)									
ECE823	Internet of Things	PEL	3	0	0	3	3				
	Technology										
Pre-requisit	es	Course Assess									
		Continuous (C	T), Mid-Term	n (MT),End As	ssessment (E	4)					
NIL		CT+MT+EA									
Course	CO1: Explain th	CO1 : Explain the term IoT and understand the main components of IoT systems.									
Outcomes	CO2: Recognize	, interpret and a	apply a varie	ty of enablin	g technologie	s, connecti	vity				
	-	nd communication	•		•						
		d analysis of a co		king IoT syste	em involving	prototypin	3,				
		nd data analytic									
Topics		iction to IoT: Int			,						
Covered		of networking:	Network typ	es; Network	topologies; (OSI model;	Adressing				
	TCP/IP;					()					
		essors of IoT: W		• •	•	(5L)					
		abling technolo	ogies: Cloud	computing;	Big data a	inalytics; E	mbedded				
	system	,									
		els: level 1 to lev									
		uction to sens		-	-		•				
		s-characteristics,			-		sors with				
		CU/ Arduino, int		sensor, interi	acing pulse s	ensor.					
60 Page	-ACLUAL	ors: types, funct	.10115								

	-Microcontrollers and overview (8L)
	16. IoT communication technologies:
	-Constrained nodes and networks: types; lossy and low power networks
	-Protocols for messaging and transport: Messaging protocols- MQTT; CoAp; XMPP; DDS
	-Protocols for addressing and identification: IPV4; IPV6; Uniform Resource Identifier (URI); 6LoWPAN; Discovery protocols like universal plug and play; multicast DNS. (6L)
	17. IoT connectivity technologies: IEEE 802.15.4; Zigbee; RFID; NFC; Sigfox; LoRa; NB-
	IoT; WiFi; Bluetooth (2L)
	18. Cloud for IoT: challenges; selection of cloud service provider; introduction to Fog computing- working principle; edge and Fog computing; security aspects. (2L)
	19. Data analytics: Data analysis; Machine learning: supervised and unsupervised; Types of ML models: classification; regression; clustering; Model building process; modeling algorithm; model performance; Big data platform. (5L)
	20. IoT case studies and future trends : Agricultural IoT; Vehicular IoT; Healthcare IoT;
	Evolution of new IoT paradigms- IoBT; IoV; IoNT; IoD; IoSpace; NFV; SDN; 5G as
	IoT enabler. (6L)
	21. IoT hands on: -Home automation: smart lighting;Air pollution monitoring;Health care: elderly fall detection; Prevention of drowsiness of drivers by IoT based smart drivers assistance systems. (9L)
Text Books,	Text Books:
and/or	5. Shriram K Vasudevan; Abhishek S Nagarajan; RMD Sundaram, Internet of Things,
reference	2 nd Edition, Wiley, New Delhi, 2020.
material	6. S. Mishra, A. Mukherjee, A. Roy, <i>Introduction to IoT</i> , 1 st Ed., Cambridge University,
	UK, 2021.
	Reference Books:
	 A. Bahga, V. Madisetti, Internet of Things: A Hands-on approach, 1st Ed., Universities Press (India) Pvt. Ltd., Hyderabad, 2014.
	8. K. N. Raja Rao (editor), <i>Internet of Things: Concepts and Applications</i> , 1 st ed., Wiley India, 2021.

COURSE ARTICULATION MATRIX

Mappi	Mapping of Course Outcome (CO) to Programme Outcome (PO) and Programme Specific Outcome (PSO)														
PO/PSO	PO#	PO#	PO#	PO#	PO#	PO#	PO#	PO#	PO#	РО	РО	РО	PSO#	PSO#	PSO#
со	1	2	3	4	5	6	7	8	9	#10	#11	#12	1	2	3
CO#1	3	3	2	1	1	1	1	1	-	2	-	2	2	2	3
CO#2	3	2	2	2	2	1	1	-	-	1	1	2	3	2	3
CO#3	3	2	3	3	3	2	2	1	-	3	3	2	3	3	3

Correlation levels 1, 2 or 3 as defined below:

	Department of	Electronics and	Communic	ation Enging	oring							
	Department of	Program			ontact hours	= 12						
Course		Core (PCR) /	TOLATIN			,- +z						
Code	Title of the course	Elective	Lecture	Tutorial	Practical	Total	Credit					
Code		(PEL)	(L)	(T)	(P)	Hours						
	VLSI Testing and	(FLL)										
ECE824	Verification	PEL	3	0	0	3	3					
	Vermation	Course Asses	smont mot	hads: (Canti		scmont (C	۸ • 1 ⊑ 0⁄)					
Pre-requisites				-		-						
		Mid-Term Assessment (MA:25%) and End-Term Assessment (EA:60%))										
Digital Circuits and	Systems (ECC402),											
VLSI Design (ECC60		tests/Assignm			23/ Class							
Course Outcomes		ful completion c			nt will he at	le to:						
Course Outcomes	• CO 1:	Extend knowle					VISI					
	circuits.	Exterio knowle	uge of the	requirement		Jucing in	VLJI					
	• CO 2:	Generate test	t vectors	to test a	circuit eff	iciently	covering					
	maximum	Generate test	vectors	to test a	chedit ch	leichtig	covering					
	faults.											
	• CO 3:	Demonstrate t	he concept	of Memory	testing tech	niques						
	• CO 4:	Discuss Built-ir			-		tal					
	design.											
	• CO 5:	Use modern to	ols for test	ing and veri	fication.							
Syllabus/	Module I.	Introduction [0								
Topics Covered		and their mo	-	ult equival	ence and d	ominance	e; fault					
		ult simulation:	-	•								
	critical path tra		•				•					
	Module II. T	est generation	for combin	ational circo	uits[L – 4]							
	Boolean differ	ence, D-algorith	nm, Podem	, random, e	tc. Exhausti	ve, rando	m, and					
	weighted test	pattern generat	ion; aliasin	g and its eff	ect on fault o	coverage.						
	Module III. Pl	A testing[L – 4]										
	Cross-point fat	ult model, test g	eneration,	easily testa	ble designs.							
	Module IV. M	lemory testing [[L – 4]									
	Permanent, in	termittent and p	oattern-sen	sitive faults	; test genera	ation.						
		elay faults and l										
		eneration techni	•									
		est pattern gene		•	-	-						
		uctures techniq	•		D, boundary	-scan.						
	Module VII.	Built-in Self-Te	-									
		ST. Verification:	-	•		•	-					
	•	path and contr	• •			systems.	Use of					
		ormal techniques: decision diagrams, logic-based approaches.										
		SIC/IP Verificat										
		ndom testing, Error detection, and correction codes.										
	Module IX.	Post-Silicon Va	-	-	line to t		انتظامهم					
		t patterns dev				-						
		able functional a		-								
		ons: OS boot										
		ard benchmarks			anous elect	incar and	mermal					
Text Books, and/o		per device speci	nicatio(1.									
reference materia		ushnell and V. D) Agrawal	"Essentials	of Electronic	Testing f	or					
		usini chi anu v. L	·· πδιαwai,	Losentiais		i coung l	01					

Refe	Digital, Memory and Mixed-Signal VLSI Circuits", Springer, 2 nd edition, 2004. rence Books:
1. 2. 3. 4.	 A. Krstic and K-T Cheng, "Delay Fault Testing for VLSI Circuits", Kluwer Academic Publishers, 3rd edition, 2003. N. K. Jha and S. Gupta, "Testing of Digital Systems", Cambridge University Press, 2nd Edition, 2003. M. Abramovici, M. A. Breuer and A. D. Friedman, "Digital Systems Testing and Testable Design", Wiley-IEEE Press, 3rd Edition, 1994. P. K. Lala, "Fault Tolerant and Fault Testable", Prentice-Hall, 4th Edition, 1986.

COURSE ARTICULATION MATRIX

Марріі	ng of C	O (Cou	rse Ou	tcome) to PO	(Prog	ramme	Outco	me) aı	nd PSO	(Progr	ramme	Specific	Outcom	ne)
PO/PSO	РО	PO	РО	PO	PO	PO	РО	PO	РО	РО	PO	PO	PSO	PSO	PSO
СО	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	2	2	2	1	1	2	1	1	1	1	1	1	3	2	2
CO#2	2	1	2	2	1	2	1	1	1	1	1	1	2	2	2
CO#3	2	1	2	2	1	2	2	1	1	1	1	1	3	3	2
CO#4	2	1	2	2	1	2	1	1	1	1	1	1	3	3	2
CO#5	2	1	2	2	1	2	1	1	1	1	1	1	3	2	3

Correlation levels 1, 2 or 3 as defined below:

	D	epartment of Electror	ics and Commu	nication Engi	neering								
Course	Title of the co	urse Program	Total N	42	Credit								
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total							
		Elective	(L)	(T)	(P)	Hours							
		(PEL)											
ECE825	Statistical Sig	gnal PEL	3	0	0	3	3						
	Processing	5											
Pre-requisites		Continuous A	Continuous Assessments :										
		Class Assessm	Class Assessment (CA), Mid-Sem (MA) and End-Sem Assessment (EA)										
Digital Sign	al Processing	(CA-15) +(MA	(CA-15) +(MA-25) + (EA-60)										
(ECC603),													
Probability	•												
Engineering Application													
(ECO541) / any other equivalent													
subject from SWAYAM, NPTEL,		EL,											
etc.													
Course		CO1: Students are able to apply hypothesis testing to signal and detection problems.											
Outcomes CO2: Students are able to evaluate detector performance.													
CO3: Students can decide and choose among MLE, MAP and MMSE estimators													
parameter estimation task.													
CO4: Students are able to apply and design least squares based adaptive filters for s													
signals.													
Topics		luction to statistical si	• • •		(1 hr.)								
Covered		le-1 : Introduction to			(6 hrs.)								
	Review	w of probability and ra	andom variables	, Linear algeb	ora of random	variables, R	andom						

	processes, Linear shift invariant systems with random inputs, White noise and spectral										
	factorization theorem										
	3. Module-2 :Estimation Theory(8 hrs.)										
	Linear models of random signals, Estimation theory 1, Estimation theory 2 - MVUE										
	and Cramer Rao lower bound, Cramer Rao lower bound 2, MVUE through										
	sufficient statistics, MVUE through sufficient statistics 2										
	4. Module-3 :Methods of Parameter Estimation (4 hrs.)										
	Method of moments and Maximum likelihood Estimation (MLE), Properties										
	of maximum likelihood estimation, Bayesian estimation, bayesian estimation 2										
	5. Module-4 :Wiener Filter (5 hrs.)										
	Optimal linear filters : Wiener filter, FIR Wiener filter, Noncausal IIR Wiener										
	filter, Causal IIR Wiener filter										
	6. Module-5 :Linear Prediction of Signals (4 hrs.)										
	Linear prediction of signals 1, Linear prediction of signals 2, Linear prediction of signals 3										
	7. Module-6 :Adaptive Filter (4 hrs.)										
	Adaptive filters 1, Adaptive filters 2, Adaptive filters 3, Adaptive filters 4										
	8. Module-7 :Recursive Least Squares (RLS) Adaptive Filter (4 hrs.)										
	Recursive least squares (RLS) adaptive filter, Recursive least squares (RLS) adaptive										
	filter-2										
	9. Module-8 :Kalman Filter (4 hrs.)										
	Kalman filter-1, Vector Kalman filter										
	10. Module-9 : Introduction to Applications of SSP(2 hrs.)										
	Common applications of SSP in communications, medical diagnosis, radar signal										
	processing/climate modelling, pattern recognition, speech and audio processing, image										
	and video processing, and geophysical signal processing										
Text Books,	Text Books:										
and/or	1. M. H. Hayes, "Statistical Digital Signal Processing and Modeling", 2002, John Willey										
Reference	2. S. M. Kay "Fundamentals of Statistical Signal Processing : Estimation Theory", 1993,										
Materials	Prentice Hall										
	3. D. G. Manolakis, V. K. Ingle, and S. M. Kogon, "Statistical and Adaptive Signal Processing"										
	2000, McGraw Hill										

Mapping of CO (Course Outcome) to PO (Programme Outcome) and PSO (Programme Specific Outcome)															
PO/PSO	PO	РО	РО	РО	PO	PO	РО	PO	PO	РО	PO	РО	PSO	PSO	PSO
СО	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#1	#2	#3
CO#1	3	1	2	1	3	3	3	1	2	2	1	2	3	3	2
CO#2	3	3	1	2	3	1	3	1	3	2	1	2	3	2	3
CO#3	3	3	1	3	3	2	2	1	3	2	1	2	3	2	2
CO#4	3	3	2	3	3	2	2	1	3	2	1	2	3	3	2

Correlation levels 1, 2 or 3 as defined below: